首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li H  Tong S  Li X  Shi H  Ying Z  Gao Y  Ge H  Niu L  Teng M 《Cell research》2011,21(7):1039-1051
The cleavage factor I(m) (CF I(m)), consists of a 25 kDa subunit (CF I(m)25) and one of three larger subunits (CF I(m)59, CF I(m)68, CF I(m)72), and is an essential protein complex for pre-mRNA 3'-end cleavage and polyadenylation. It recognizes the upstream sequence of the poly(A) site in a sequence-dependent manner. Here we report the crystal structure of human CF I(m), comprising CF I(m)25 and the RNA recognition motif domain of CF I(m)68 (CF I(m)68RRM), and the crystal structure of the CF I(m)-RNA complex. These structures show that two CF I(m)68RRM molecules bind to the CF I(m)25 dimer via a novel RRM-protein interaction mode forming a heterotetramer. The RNA-bound structure shows that two UGUAA RNA sequences, with anti-parallel orientation, bind to one CF I(m)25-CF I(m)68RRM heterotetramer, providing structural basis for the mechanism by which CF I(m) binds two UGUAA elements within one molecule of pre-mRNA simultaneously. Point mutation and kinetic analyses demonstrate that CF I(m)68RRM can bind the immediately flanking upstream region of the UGUAA element, and CF I(m)68RRM binding significantly increases the RNA-binding affinity of the complex, suggesting that CF I(m)68 makes an essential contribution to pre-mRNA binding.  相似文献   

2.
Brown KM  Gilmartin GM 《Molecular cell》2003,12(6):1467-1476
Human cleavage factor I(m) (CFI(m)) is a heterodimeric RNA binding protein complex that functions at an early step in the assembly of the pre-mRNA 3' processing complex. In this report we show that CFI(m) can stimulate both cleavage and poly(A) addition, and can act to suppress poly(A) site cleavage in a sequence-dependent manner. Elevated levels of CFI(m) suppressed cleavage at the primary poly(A) site of the pre-mRNA encoding the 68 kDa subunit of CFI(m). CFI(m)-mediated suppression of poly(A) site cleavage was dependent upon the presence of three copies of an RNA element initially identified by CFI(m)-SELEX. These data provide evidence for a mechanism for the regulation of poly(A) site selection by a basal pre-mRNA 3' processing factor.  相似文献   

3.
4.
HuC is one of the RNA binding proteins which are suggested to play important roles in neuronal differentiation and maintenance. We cloned and sequenced cDNAs encoding a mouse protein which is homologous to human HuC (hHuC). The longest cDNA encodes a 367 amino acid protein with three RNA recognition motifs (RRMs) and displays 96% identity to hHuC. Northern blot analysis showed that two different mRNAs, of 5.3 and 4.3 kb, for mouse HuC (mHuC) are expressed specifically in brain tissue. Comparison of cDNA sequences with the corresponding genomic sequence revealed that alternative 3' splice site selection generates two closely related mHuC isoforms. Iterative in vitro RNA selection and binding analyses showed that both HuC isoforms can bind with almost identical specificity to sequences similar to the AU-rich element (ARE), which is involved in the regulation of mRNA stability. Functional domain mapping using mHuC deletion mutants showed that the first RRM binds to ARE, that the second RRM has no RNA binding activity by itself, but facilitates ARE binding by the first RRM and that the third RRM has specific binding activity for the poly(A) sequence.  相似文献   

5.
When bound to the 3′ poly(A) tail of mRNA, poly(A)-binding protein (PABP) modulates mRNA translation and stability through its association with various proteins. By visualizing individual PABP molecules in real time, we found that PABP, containing four RNA recognition motifs (RRMs), adopts a conformation on poly(A) binding in which RRM1 is in proximity to RRM4. This conformational change is due to the bending of the region between RRM2 and RRM3. PABP-interacting protein 2 actively disrupts the bent structure of PABP to the extended structure, resulting in the inhibition of PABP-poly(A) binding. These results suggest that the changes in the configuration of PABP induced by interactions with various effector molecules, such as poly(A) and PABP-interacting protein 2, play pivotal roles in its function.  相似文献   

6.
Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive and cap-interacting 3' exoribonuclease that efficiently degrades mRNA poly(A) tails. Here we show that the RNA recognition motif (RRM) of PARN harbors both poly(A) and cap binding properties, suggesting that the RRM plays an important role for the two critical and unique properties that are tightly associated with PARN activity, i.e. recognition and dependence on both the cap structure and poly(A) tail during poly(A) hydrolysis. We show that PARN and its RRM have micromolar affinity to the cap structure by using fluorescence spectroscopy and nanomolar affinity for poly(A) by using filter binding assay. We have identified one tryptophan residue within the RRM that is essential for cap binding but not required for poly(A) binding, suggesting that the cap- and poly(A)-binding sites associated with the RRM are both structurally and functionally separate from each other. RRM is one of the most commonly occurring RNA-binding domains identified so far, suggesting that other RRMs may have both cap and RNA binding properties just as the RRM of PARN.  相似文献   

7.
In this issue, Yang et al. (2011) show that the 3' end processing factor CFI(m) interacts with RNA in manner that facilitates RNA looping, suggesting mechanistic roles for this factor in the regulation of poly(A) site selection.  相似文献   

8.
T cell intracellular antigen-1 (TIA-1), an apoptosis promoting factor, functions as a splicing regulator for the Fas pre-mRNA. TIA-1 possesses three RNA recognition motifs (RRMs) and a glutamine-rich domain. The second RRM (RRM2) is necessary and sufficient for tight, sequence-specific binding to the uridine-rich sequences buried around the 5' splice sites. In the present study, we solved the solution structure of the murine TIA-1 RRM2 by heteronuclear-nuclear magnetic resonance spectroscopy. The TIA-1 RRM2 adopts the RRM fold (betaalphabetabetaalphabeta) and possesses an extra beta-strand between beta2 and beta3, which forms an additional beta-sheet with the C-terminal part of beta2. We refer to this structure as the beta2-beta2' beta-loop. Interestingly, this characteristic beta-loop structure is conserved among a number of RRMs, including the U2AF65 RRM2 and the Sex-lethal RRM1 and RRM2, which also bind to uridine-rich RNAs. Furthermore, we identified a new sequence motif in the beta2-beta2' beta-loop, the DxxT motif. Chemical shift perturbation analyses of both the main and side chains upon binding to the uridine pentamer RNA revealed that most of the beta-sheet surface, including the beta2-beta2' beta-loop, is involved in the RNA binding. An investigation of the chemical shift perturbation revealed similarity in the RNA recognition modes between the TIA-1 and U2AF65 RRMs.  相似文献   

9.
hnRNP A2, a potential ssDNA/RNA molecular adapter at the telomere   总被引:5,自引:1,他引:4       下载免费PDF全文
The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.  相似文献   

10.
Vertebrate polyadenylation sites are identified by the AAUAAA signal and by GU-rich sequences downstream of the cleavage site. These are recognized by a heterotrimeric protein complex (CstF) through its 64 kDa subunit (CstF-64); the strength of this interaction affects the efficiency of poly(A) site utilization. We present the structure of the RNA-binding domain of CstF-64 containing an RNA recognition motif (RRM) augmented by N- and C-terminal helices. The C-terminal helix unfolds upon RNA binding and extends into the hinge domain where interactions with factors responsible for assembly of the polyadenylation complex occur. We propose that this conformational change initiates assembly. Consecutive Us are required for a strong CstF-GU interaction and we show how UU dinucleotides are recognized. Contacts outside the UU pocket fine tune the protein-RNA interaction and provide different affinities for distinct GU-rich elements. The protein-RNA interface remains mobile, most likely a requirement to bind many GU-rich sequences and yet discriminate against other RNAs. The structural distinction between sequences that form stable and unstable complexes provides an operational distinction between weakly and strongly processed poly(A) sites.  相似文献   

11.
12.
Eukaryotic initiation factor 4B (eIF4B) is a multidomain protein with a range of activities that serves primarily to promote association of messenger RNA to the 40S ribosomal subunit during translation initiation. We report here the solution structure of the eIF4B RNA recognition motif (RRM) domain. It adopts a classical RRM fold, with a beta alpha beta beta alpha beta topology. The most striking difference with other RRM structures is in the disposition of loop 3, which connects the beta 2 and beta 3 strands and is implicated in RNA recognition. This loop folds down against the body of the RRM and exhibits restricted motion on a milli- to microsecond time scale. Although it contributes to a large basic patch on the RNA binding surface, it does not protrude out from the domain as observed in other RRM structures, possibly implying a different mode of RNA binding. On its own, the core RRM domain provides only a relative weak interaction with RNA targets and appears to require extensions at the N- and C-terminus for high-affinity binding.  相似文献   

13.
The C-to-U editing of apolipoprotein-B (apo-B) mRNA is catalyzed by an enzyme complex that recognizes an 11-nt mooring sequence downstream of the editing site. A minimal holoenzyme that edits apo-B mRNA in vitro has been defined. This complex contains apobec-1, the catalytic subunit, and apobec-1 complementation factor (ACF), the RNA-binding subunit that binds to the mooring sequence. Here, we show that ACF binds with high affinity to single-stranded but not double-stranded apo-B mRNA. ACF contains three nonidentical RNA recognition motifs (RRM) and a unique C-terminal auxiliary domain. In many multi-RRM proteins, the RRMs mediate RNA binding and an auxiliary domain functions in protein-protein interactions. Here we show that ACF does not fit this simple model. Based on deletion mutagenesis, the RRMs in ACF are necessary but not sufficient for binding to apo-B mRNA. Amino acids in the pre-RRM region are required for complementing activity and RNA binding, but not for interaction with apobec-1. The C-terminal 196 amino acids are not absolutely essential for function. However, further deletion of an RG-rich region from the auxiliary domain abolished complementing activity, RNA binding, and apobec-1 interaction. The auxiliary domain alone did not bind apobec-1. Although all three RRMs are required for complementing activity and apobec-1 interaction, the individual motifs contribute differently to RNA binding. Point mutations in RRM1 or RRM2 decreased the Kd for apo-B mRNA by two orders of magnitude whereas mutations in RRM3 reduced binding affinity 13-fold. The pairwise expression of RRM1 with RRM2 or RRM3 resulted in moderate affinity binding.  相似文献   

14.
The poly(A)-binding protein (PABP), a protein that contains four conserved RNA recognition motifs (RRM1-4) and a C-terminal domain, is expressed throughout the eukaryotic kingdom and promotes translation through physical and functional interactions with eukaryotic initiation factor (eIF) 4G and eIF4B. Two highly divergent isoforms of eIF4G, known as eIF4G and eIFiso4G, are expressed in plants. As little is known about how PABP can interact with RNA and three distinct translation initiation factors in plants, the RNA binding specificity and organization of the protein interaction domains in wheat PABP was investigated. Wheat PABP differs from animal PABP in that its RRM1 does not bind RNA as an individual domain and that RRM 2, 3, and 4 exhibit different RNA binding specificities to non-poly(A) sequences. The PABP interaction domains for eIF4G and eIFiso4G were distinct despite the functional similarity between the eIF4G proteins. A single interaction domain for eIF4G is present in the RRM1 of PABP, whereas eIFiso4G interacts at two sites, i.e. one within RRM1-2 and the second within RRM3-4. The eIFiso4G binding site in RRM1-2 mapped to a 36-amino acid region encompassing the C-terminal end of RRM1, the linker region, and the N-terminal end of RRM2, whereas the second site in RRM3-4 was more complex. A single interaction domain for eIF4B is present within a 32-amino acid region representing the C-terminal end of RRM1 of PABP that overlaps with the N-proximal eIFiso4G interaction domain. eIF4B and eIFiso4G exhibited competitive binding to PABP, supporting the overlapping nature of their interaction domains. These results support the notion that eIF4G, eIFiso4G, and eIF4B interact with distinct molecules of PABP to increase the stability of the interaction between the termini of an mRNA.  相似文献   

15.
T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms.  相似文献   

16.
The RNA recognition motif (RRM) is one of the most common eukaryotic protein motifs. RRM sequences form a conserved globular structure known as the RNA-binding domain (RBD) or the ribonucleoprotein domain. Many proteins that contain RRM sequences bind RNA in a sequence-specific manner. To investigate the basis for the RNA-binding specificity of RRMs, we subjected 330 aligned RRM sequences to covariance analysis. The analysis revealed a single network of covariant amino acid pairs comprising the buried core of the RBD and a surface patch. Structural studies have implicated a subset of these residues in RNA binding. The covariance linkages identify a larger set of amino acid residues, including some not directly in contact with bound RNA, that may influence RNA-binding specificity.  相似文献   

17.
Cytoplasmic inclusions containing TAR DNA-binding protein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hallmark of amyotrophic lateral sclerosis (ALS) and several subtypes of frontotemporal lobar degeneration (FTLD). FUS-positive inclusions in FTLD and ALS patients are consistently co-labeled with stress granule (SG) marker proteins. Whether TDP-43 inclusions contain SG markers is currently still debated. We determined the requirements for SG recruitment of FUS and TDP-43 and found that cytoplasmic mislocalization is a common prerequisite for SG recruitment of FUS and TDP-43. For FUS, the arginine-glycine-glycine zinc finger domain, which is the protein's main RNA binding domain, is most important for SG recruitment, whereas the glycine-rich domain and RNA recognition motif (RRM) domain have a minor contribution and the glutamine-rich domain is dispensable. For TDP-43, both the RRM1 and the C-terminal glycine-rich domain are required for SG localization. ALS-associated point mutations located in the glycine-rich domain of TDP-43 do not affect SG recruitment. Interestingly, a 25-kDa C-terminal fragment of TDP-43, which is enriched in FTLD/ALS cortical inclusions but not spinal cord inclusions, fails to be recruited into SG. Consistently, inclusions in the cortex of FTLD patients, which are enriched for C-terminal fragments, are not co-labeled with the SG marker poly(A)-binding protein 1 (PABP-1), whereas inclusions in spinal cord, which contain full-length TDP-43, are frequently positive for this marker protein.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号