首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Food web response to species loss has been investigated in several ways in the previous years. In binary food webs, species go secondarily extinct if no resource item remains to be exploited. In this work, we considered that species can go extinct before the complete loss of their resources and we introduced thresholds of minimum energy requirement for species survival. According to this approach, extinction of a node occurs whenever an initial extinction event eliminates its incoming links so it is left with an overall energy intake lower than the threshold value. We tested the robustness of 18 real food webs by removing species from most to least connected and considering different scenarios defined by increasing the extinction threshold. Increasing energy requirement threshold negatively affects food web robustness. We found that a very small increase of the energy requirement substantially increases system fragility. In addition, above a certain value of energy requirement threshold we found no relationship between the robustness and the connectance of the web. Further, food webs with more species showed higher fragility with increasing energy threshold. This suggests that the shape of the robustness–complexity relationship of a food web depends on the sensitivity of consumers to loss of prey.  相似文献   

2.
1.?To address effects of land use and human overexploitation on wildlife populations, it is essential to better understand how human activities have changed species composition, diversity and functioning. Theoretical studies modelled how network properties change under human-induced, non-random species loss. However, we lack data on realistic species-loss sequences in threatened, real-world food webs to parameterize these models. 2.?Here, we present a first size-structured topological food web of one of the most pristine terrestrial ecosystems in the world, the Serengeti ecosystem (Tanzania). The food web consists of 95 grouped nodes and includes both invertebrates and vertebrates ranging from body masses between 10(-7) and 10(4) kg. 3.?We study the topological changes in this food web that result from the simulated IUCN-based species-loss sequence representing current species vulnerability to human disturbances in and around this savanna ecosystem. We then compare this realistic extinction scenario with other extinction sequences based on body size and connectance and perform an analysis of robustness of this savanna food web. 4.?We demonstrate that real-world species loss in this case starts with the biggest (mega) herbivores and top predators, causing higher predator-prey mass ratios. However, unlike theoretically modelled linear species deletion sequences, this causes poor-connected species to be lost first, while more highly connected species become lost as human impact progresses. This food web shows high robustness to decreasing body size and increasing connectance deletion sequences compared with a high sensitivity to the decreasing connectance deletion scenario. 5.?Furthermore, based on the current knowledge of the Serengeti ecosystem, we discuss how the focus on food web topology alone, disregarding nontrophic interactions, may lead to an underestimation of human impacts on wildlife communities, with the number of trophic links affected by a factor of two. 6.?This study underlines the importance of integrative efforts between the development of food web theory and basic field work approaches in the quantification of the structure of interaction networks to sustain natural ecosystems in a changing world.  相似文献   

3.
Loss of species will directly change the structure and potentially the dynamics of ecological communities, which in turn may lead to additional species loss (secondary extinctions) due to direct and/or indirect effects (e.g. loss of resources or altered population dynamics). Furthermore, the vulnerability of food webs to repeated species loss is expected to be affected by food web topology, species interactions, as well as the order in which species go extinct. Species traits such as body size, abundance and connectivity might determine a species’ vulnerability to extinction and, thus, the order in which species go primarily extinct. Yet, the sequence of primary extinctions, and their effects on the vulnerability of food webs to secondary extinctions, when species abundances are allowed to respond dynamically, has only recently become the focus of attention. Here, we analyse and compare topological and dynamical robustness to secondary extinctions of model food webs, in the face of 34 extinction sequences based on species traits. Although secondary extinctions are frequent in the dynamical approach and rare in the topological approach, topological and dynamical robustness tends to be correlated for many bottom–up directed, but not for top–down directed deletion sequences. Furthermore, removing species based on traits that are strongly positively correlated to the trophic position of species (such as large body size, low abundance, high net effect) is, under the dynamical approach, found to be as destructive as removing primary producers. Such top–down oriented removal of species are often considered to correspond to realistic extinction scenarios, but earlier studies, based on topological approaches, have found such extinction sequences to have only moderate effects on the remaining community. Thus, our result suggests that the structure of ecological communities, and therefore the integrity of important ecosystem processes could be more vulnerable to realistic extinction sequences than previously believed.  相似文献   

4.
Habitat destruction can be classified into instantaneous destruction and continuous destruction by the different ways of human destroying habitat. Previous studies, however, always focused on instantaneous destruction. In this study, we develop a universal model, Multi-time scale N-species model, to study and compare the responses of metapopulation dynamics to both kinds of habitat destruction. The model explores that: (1) under instantaneous habitat destruction, species extinction is determined by the proportion of habitat destruction (D) and the structure of metapopulation (q). When D>q, species will go extinct ranked from the best competitor to the worst. When Dq, no species will go extinct, but the equilibrium abundances of odd-ranked competitors will decrease, and the equilibrium abundances of even-ranked competitors will increase; (2) under continuous destruction, species extinction is dependent on the speed of habitat destruction and the metapopulation structure. The higher the speed of habitat destruction and the bigger q are, the earlier species go extinct. Usually, there are two possible mechanisms of species extinction: one is that all species go extinct collectively following complete destruction, and the other is that species go extinct in ranked competitive order from best to worst, and the survivals, if they exist, will go extinct collectively following complete destruction. The oscillation amplitudes of inferior competitors are so large as to increase the probability of stochastic extinction under instantaneous destruction. Therefore, it is relatively propitious for the persistence of rare species under slow and continuous destruction, especially when continuous destruction stops.  相似文献   

5.
Extinction affected food web structure in paleoecosystems. Recent theoretical studies that examined the effects of extinction intensity on food web structure on ecological time scales have considered extinction to involve episodic events, with pre-extinction food webs becoming established without dynamics. However, in terms of the paleontological time scale, food web structures are generated from feedback with repeated extinctions, because extinction frequency is affected by food web structure, and food web structure itself is a product of previous extinctions. We constructed a simulation model of changes in tri-trophic-level food webs to examine how continual extinction events affect food webs on an evolutionary time scale. We showed that under high extinction intensity (1) species diversity, especially that of consumer species, decreased; (2) the total population density at each trophic level decreased, while the densities of individual species increased; and (3) the trophic link density of the food web increased. In contrast to previous models, our results were based on an assumption of long-term food web development and are able to explain overall trends posited by empirical investigations based on fossil records.  相似文献   

6.
We develop a set of equations to describe the population dynamics of many interacting species in food webs. Predator-prey interactions are nonlinear, and are based on ratio-dependent functional responses. The equations account for competition for resources between members of the same species, and between members of different species. Predators divide their total hunting/foraging effort between the available prey species according to an evolutionarily stable strategy (ESS). The ESS foraging behaviour does not correspond to the predictions of optimal foraging theory. We use the population dynamics equations in simulations of the Webworld model of evolving ecosystems. New species are added to an existing food web due to speciation events, whilst species become extinct due to coevolution and competition. We study the dynamics of species-diversity in Webworld on a macro-evolutionary time-scale. Coevolutionary interactions are strong enough to cause continuous overturn of species, in contrast to our previous Webworld simulations with simpler population dynamics. Although there are significant fluctuations in species diversity because of speciation and extinction, very large-scale extinction avalanches appear to be absent from the dynamics, and we find no evidence for self-organized criticality.  相似文献   

7.
人类活动所引起的栖息地毁坏已成为当前物种多样性丧失的最主要的原因之一。空间显含模型相对于空间隐含模型来说,更加接近于现实,因此,通过元胞自动机,模拟了物种多样性对万年、千年、百年时间尺度人类活动所引起的栖息地毁坏的响应。研究结果表明:万年时间尺度上,物种是由强到弱的灭绝;而在千年时间尺度上,物种灭绝的序受集合种群结构的影响较大;在百年时间尺度上。物种由于栖息地毁坏过于剧烈和迅速,来不及作出响应。在栖息地完全毁坏时集体灭绝。因此,物种灭绝序不只是受竞争-侵占均衡机制的影响,还受不同时间尺度(不同速率)栖息地毁坏的影响。以及集合种群结构的影响。  相似文献   

8.
Previous studies have shown that high-resolution, empirical food webs possess a non-random network structure, typically characterized by uniform or exponential degree distributions. However, the empirical food webs that have been investigated for their structural properties represent local communities that are only a subset of a larger pool of regionally coexisting species. Here, we use a simple model to investigate the effects of regional food web structure on local food webs that are assembled by two simple processes: random immigration of species from a source web (regional food web), and random extinction of species within the local web. The model shows that local webs with non-random degree distributions can arise from randomly structured source webs. A comparison of local webs assembled from randomly structured source webs with local webs assembled from source webs generated by the niche model shows that the former have higher species richness at equilibrium, but have a nonlinear response to changing extinction rates. These results imply that the network structure of regional food webs can play a significant role in the assembly and dynamics of local webs in natural ecosystems. With natural landscapes becoming increasingly fragmented, understanding such structure may be a necessary key to understanding the maintenance and stability of local species diversity.  相似文献   

9.
Mike S. Fowler 《Oikos》2013,122(12):1730-1738
Forcibly removing species from ecosystems has important consequences for the remaining assemblage, leading to changes in community structure, ecosystem functioning and secondary (cascading) extinctions. One key question that has arisen from single‐ and multi‐trophic ecosystem models is whether the secondary extinctions that occur within competitive communities (guilds) are also important in multi‐trophic ecosystems? The loss of consumer–resource links obviously causes secondary extinction of specialist consumers (topological extinctions), but the importance of secondary extinctions in multi‐trophic food webs driven by direct competitive exclusion remains unknown. Here I disentangle the effects of extinctions driven by basal competitive exclusion from those caused by trophic interactions in a multi‐trophic ecosystem (basal producers, intermediate and top consumers). I compared food webs where basal species either show diffuse (all species compete with each other identically: no within guild extinctions following primary extinction) or asymmetric competition (unequal interspecific competition: within guild extinctions are possible). Basal competitive exclusion drives extra extinction cascades across all trophic levels, with the effect amplified in larger ecosystems, though varying connectance has little impact on results. Secondary extinction patterns based on the relative abundance of the species lost in the primary extinction differ qualitatively between diffuse and asymmetric competition. Removing asymmetric basal species with low (high) abundance triggers fewer (more) secondary extinctions throughout the whole food web than removing diffuse basal species. Rare asymmetric competitors experience less pressure from consumers compared to rare diffuse competitors. Simulations revealed that diffuse basal species are never involved in extinction cascades, regardless of the trophic level of a primary extinction, while asymmetric competitors were. This work highlights important qualitative differences in extinction patterns that arise when different assumptions are made about the form of direct competition in multi‐trophic food webs.  相似文献   

10.
Climate models predict a dramatic increase in the annual frequency and severity of extreme weather events during the next century. Here we show that increases in the annual frequency of severe storms lead to a decrease in the diversity and complexity of food webs of giant kelp forests, one of the most productive habitats on Earth. We demonstrate this by linking natural variation in storms with measured changes in kelp forest food web structure in the Santa Barbara Channel using structural equation modeling (SEM). We then match predictions from statistical models to results from a multiyear kelp removal experiment designed to simulate frequent large storms. Both SEM models and experiments agree: if large storms remain at their current annual frequency (roughly one major kelp‐removing storm every 3.5 years), periodic storms help maintain the complexity of kelp forest food webs. However, if large storms increase in annual frequency and begin to occur year after year, kelp forest food webs become less diverse and complex as species go locally extinct. The loss of complexity occurs primarily due to decreases in the diversity and complexity of higher trophic levels. Our findings demonstrate that shifts in climate‐driven disturbances that affect foundation species are likely to have impacts that cascade through entire ecosystems.  相似文献   

11.
The evolutionary patterns of animal species clades in an evolving food web system were examined by computer simulation. In this system, each animal species fed on other species according to feeding preference. The food web system evolved via the appearance and extinction of species. The model succeeded in reproducing evolutionary patterns of diversity similar to those seen in the fossil record. This result indicates that the model reproduced the temporal changes of the rates of colonization and extinction of species in the system, which have been decided a priori in the previous stochastic models. In the food web system, the numbers of both predatory and prey species influenced the temporal diversity patterns in each clade in the system. The number of prey species fluctuated strongly, whereas the number of predatory species gradually increased with time. Therefore, temporal diversity patterns were influenced mainly by the number of predatory species. As a result of the gradual increase of the number of predatory species, it was difficult for each clade to maintain its species diversity for a long time. Slight changes of interspecific interaction can sometimes decide the destiny of a clade. When a clade is faced with extinction, if one predatory species of the clade becomes extinct and one or two prey species of the clade appear, the species diversity in the clade increases again. This result indicates that slight changes of interspecific interaction sometimes decide the destiny of a clade.  相似文献   

12.
Generalities of food web structure have been identified for extant ecosystems. However, the trophic organization of ancient ecosystems is unresolved, as prior studies of fossil webs have been limited by low-resolution, high-uncertainty data. We compiled highly resolved, well-documented feeding interaction data for 700 taxa from the 48 million-year-old latest early Eocene Messel Shale, which contains a species assemblage that developed after an interval of protracted environmental and biotal change during and following the end-Cretaceous extinction. We compared the network structure of Messel lake and forest food webs to extant webs using analyses that account for scale dependence of structure with diversity and complexity. The Messel lake web, with 94 taxa, displays unambiguous similarities in structure to extant webs. While the Messel forest web, with 630 taxa, displays differences compared to extant webs, they appear to result from high diversity and resolution of insect–plant interactions, rather than substantive differences in structure. The evidence presented here suggests that modern trophic organization developed along with the modern Messel biota during an 18 Myr interval of dramatic post-extinction change. Our study also has methodological implications, as the Messel forest web analysis highlights limitations of current food web data and models.  相似文献   

13.
Past models have suggested host-parasite coextinction could lead to linear, or concave down relationships between free-living species richness and parasite richness. I explored several models for the relationship between parasite richness and biodiversity loss. Life cycle complexity, low generality of parasites and sensitivity of hosts reduced the robustness of parasite species to the loss of free-living species diversity. Food-web complexity and the ordering of extinctions altered these relationships in unpredictable ways. Each disassembly of a food web resulted in a unique relationship between parasite richness and the richness of free-living species, because the extinction trajectory of parasites was sensitive to the order of extinctions of free-living species. However, the average of many disassemblies tended to approximate an analytical model. Parasites of specialist hosts and hosts higher on food chains were more likely to go extinct in food-web models. Furthermore, correlated extinctions between hosts and parasites (e.g. if parasites share a host with a specialist predator) led to steeper declines in parasite richness with biodiversity loss. In empirical food webs with random removals of free-living species, the relationship between free-living species richness and parasite richness was, on average, quasi-linear, suggesting biodiversity loss reduces parasite diversity more than previously thought.  相似文献   

14.
Food web structure and habitat loss   总被引:4,自引:0,他引:4  
In this paper we explore simple food web models to study how metacommunity structure affects species response to habitat loss. We find that patch abundances and extinction thresholds vary according to the kind of food web. Second, for intermediate species, a slight decrease in the exploration cost of the better competitor has a strong effect on the extinction threshold of the poorer competitor. When predicting extinction risk one should consider not only the amount of habitat destroyed, but also the structure of the food web in which species are embedded. Both direct and indirect interactions are critical for predicting the consequences of habitat destruction.  相似文献   

15.
Understanding the ecology of environmentally acquired and multi‐host pathogens affecting humans and wildlife has been elusive in part because fluctuations in the abundance of host and pathogen species may feed back onto pathogen transmission. Complexity of pathogen‐host dynamics emerges from processes driving local extinction of the pathogen, its hosts and non‐hosts. While the extinction of species may entail losses in pathogen–host interactions and decrease the proportion of hosts infected by a pathogen (prevalence), some studies suggest the opposite pattern. Niche‐based extinction, based on the species tolerance to environmental conditions, may increase prevalence of infection because the pathogen and its hosts persist, while other species go extinct. Hence, understanding prevalence of infection requires disentangling random‐ and niche‐based extinction processes occurring simultaneously. To contribute to this exercise, we analysed the prevalence of an environmentally acquired, multi‐host pathogen, Mycobacterium ulcerans (MU), in a unique dataset of 16 communities of freshwater animals, surveyed during 12 months in Akonolinga, Cameroon in equatorial Africa. Two different ecosystems were identified: rivers (lotic) and swamps and flooded areas (lentic). Increased prevalence of MU infection was correlated with niche‐based extinction of aquatic host invertebrates and vertebrates in the lentic ecosystems, whereas decreased prevalence was associated with random disassembly of the lotic ecosystems. This finding suggests that random and niche‐based extinction of host taxa are key to assessing the effect of local extinction of species on the ecology of environmentally acquired and multi‐host pathogens.  相似文献   

16.
Understanding which species might become extinct and the consequences of such loss is critical. One consequence is a cascade of further, secondary extinctions. While a significant amount is known about the types of communities and species that suffer secondary extinctions, little is known about the consequences of secondary extinctions for biodiversity. Here we examine the effect of these secondary extinctions on trophic diversity, the range of trophic roles played by the species in a community. Our analyses of natural and model food webs show that secondary extinctions cause loss of trophic diversity greater than that expected from chance, a result that is robust to variation in food web structure, distribution of interactions strengths, functional response, and adaptive foraging. Greater than expected loss of trophic diversity occurs because more trophically unique species are more vulnerable to secondary extinction. This is not a straightforward consequence of these species having few links with others but is a complex function of how direct and indirect interactions affect species persistence. A positive correlation between a species' extinction probability and the importance of its loss defines high-risk species and should make their conservation a priority.  相似文献   

17.
Ecologists have long searched for structures and processes that impart stability in nature. In particular, food web ecology has held promise in tackling this issue. Empirical patterns in food webs have consistently shown that the distributions of species and interactions in nature are more likely to be stable than randomly constructed systems with the same number of species and interactions. Food web ecology still faces two fundamental challenges, however. First, the quantity and quality of food web data required to document both the species richness and the interaction strengths among all species within food webs is largely prohibitive. Second, where food webs have been well documented, spatial and temporal variation in food web structure has been ignored. Conversely, research that has addressed spatial and temporal variation in ecosystems has generally ignored the full complexity of food web architecture. Here, we incorporate empirical patterns, largely from macroecology and behavioural ecology, into a spatially implicit food web structure to construct a simple landscape theory of food web architecture. Such an approach both captures important architectural features of food webs and allows for an exploration of food web structure across a range of spatial scales. Finally, we demonstrated that food webs are hierarchically organized along the spatial and temporal niche axes of species and their utilization of food resources in ways that stabilize ecosystems.  相似文献   

18.
We introduce a discrete-time host–parasitoid model with a strong Allee effect on the host. We adapt the Nicholson–Bailey model to have a positive density dependent factor due to the presence of an Allee effect, and a negative density dependence factor due to intraspecific competition. It is shown that there are two scenarios, the first with no interior fixed points and the second with one interior fixed point. In the first scenario, we show that either both host and parasitoid will go to extinction or there are two regions, an extinction region where both species go to extinction and an exclusion region in which the host survives and tends to its carrying capacity. In the second scenario, we show that either both host and parasitoid will go to extinction or there are two regions, an extinction region where both species go to extinction and a coexistence region where both species survive.  相似文献   

19.
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.  相似文献   

20.
I conducted computer simulations of food web evolution and investigated the relationship between the duration of food web evolution and the vulnerability to biological invasion. Model food webs without evolution consisted of animal species with a limited number of prey species and producer species with small intrinsic growth rates. Because these species were not resistant to predation pressure, model food webs without evolution were vulnerable to invasion of powerful omnivores, which had a wide range of feeding preference and a high ecological efficiency. In model food webs without evolution, the number of animal species depending on producer species was small. Therefore, if a producer species invaded and disturbed the base of such food webs, few animal species became extinct. However, model food webs with a long time evolution had a structure that a small number of producer species supported a large number of animal species. When a producer species invaded and disturbed the base of such food webs in this state, many species became extinct by an indirect effect. The mean number of prey species of animal species and the mean intrinsic growth rate of producer species increased rapidly in the early stage of evolution. Therefore, in the early stage of food web evolution, food webs were temporarily resistant to invasion of powerful omnivores. However, this resistibility was not maintained for a long time. The result of this study strongly suggests that food webs change with time, and consequently the vulnerability to invasion changes with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号