首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1996 and 1997 a field survey of the abundance and species composition of cereal aphid primary and secondary parasitoids in spring barley, winter wheat and durum wheat was conducted in Zealand, Denmark. The purpose was to create a better understanding of the mechanisms underlying aphid–parasitoid dynamics in the field. Such an understanding can be used when developing biological control methods in cereals. In both years aphid attacks in cereals began in late June and never exceeded the economic threshold. In 1996 the first aphids were found in wheat on 26 June; in 1997 the first aphids were found on 24 June on both crops. The highest densities reached in 1996 were an average of six aphids per shoot in winter wheat and one aphid per shoot in spring barley. In 1997 the highest densities reached were 11 aphids per shoot in winter wheat and four aphids per shoot in spring barley. The aphid population collapsed by the end of July to early August in 1996, but it collapsed by mid-July in 1997. The onset and peak of parasitization were delayed in comparison to aphid infestation. Parasitism was 20–60% by the end of the cropping season in spring barley, and 30–80% in winter wheat and durum wheat in 1996. In 1997 parasitism did not exceed 3–11% in barley and was less than 2% in one winter wheat field but more than 40% in the other winter wheat field sampled. In both years most parasitism was due to Aphidiidae (Hymenoptera). The two dominant species were Aphidius ervi Haliday and Aphidius rhopalosiphi De Stefani-Perez. Hyperparasitism began after primary parasitism and increased progressively during the cropping season. The two years were similar in many respects, including for species composition of aphids and parasitoids. The late start of the aphid infestation may have contributed to the high level of parasitization found in 1996, but in 1997 the aphid infestation period was so short that a parasitoid population did not have time to build up.  相似文献   

2.
In field populations of cereal aphids parasitism levels declined through the season as fungal infection increased. In laboratory trials the fungusErynia neoaphidis Remaudiere & Hennebert took 3 to 4 days to kill the rose-grain aphid,Metopolophium dirhodum (Walker), whereas the parasitoidAphidius rhopalosiphi De Stefani-Perez took 8 to 9 days at 20°C. When aphids were infected by the fungus less than 4 days after being parasitized the parasitoids were prevented from completing their development. Conversely, when infection occurred more than 4 days after parasitization development of the fungus was significantly impaired. There was no histological evidence that the fungus invaded the tissues of the parasitoid when both attacked the same aphid. Interference between parasitoids and fungal pathogens must be taken into account when estimating the impact of these mortality agents on pest populations.  相似文献   

3.
Hodge S  Powell G 《Oecologia》2008,157(3):387-397
Plant viruses modify the development of their aphid vectors by inducing physiological changes in the shared host plant. The performance of hymenopterous parasitoids exploiting these aphids can also be modified by the presence of the plant pathogen. We used laboratory and glasshouse microcosms containing beans (Vicia faba) as the host plant to examine the interactions between a plant virus (pea enation mosaic virus; PEMV) and a hymenopterous parasitoid (Aphidius ervi) that share the aphid vector/host Acyrthosiphon pisum. Neither PEMV-infection of V. faba, nor the carriage of PEMV virions by A. pisum, affected the growth or morphology of the aphid, or the oviposition behaviour and development of A. ervi. The presence of developing Aphidius ervi larvae within Acyrthosiphon pisum did not affect the ability of the aphids to transmit PEMV. However, by reducing their longevity, parasitism ultimately decreased the time viruliferous aphids were able to inoculate plants. In terms of virus dispersal, parasitized aphids exhibited more movement around experimental arenas than unparasitized controls, causing a slight increase in the proportion of beans infected with PEMV. Exposure to adult Aphidius ervi caused Acyrthosiphon pisum to rapidly drop off bean plants and disperse to new hosts, resulting in considerably higher plant infection rates (70%) than that seen in control arenas (25%). The results of this investigation demonstrate that when parasitoids are added to a plant-pathogen-vector system, benefits to the host plant due to reduced herbivore infestation must be balanced against the consequences of parasitoid-induced aphid dispersal and a subsequent increase in the level of plant infection.  相似文献   

4.
Abstract 1. Motivated by a community study on aphids and their fungal pathogens, three hypotheses were tested experimentally to investigate the influence of the fungal pathogen, Erynia neoaphidis Remaudière and Hennebert, on aphid population and community ecology.
2. Field experiments were performed in 2 years to test whether two susceptible aphid species on different host plants might interact through the shared fungal pathogen. No strong pathogen-mediated indirect interactions (apparent competition) between populations of pea aphid Acyrthosiphon pisum Harris and nettle aphid Microlophium carnosum Buckton were detected.
3. In the first of the field experiments, pea aphids exposed to the fungus showed a weak tendency to produce more winged dispersal morphs than control populations not exposed to the fungus. In a laboratory test, however, no support was found for the hypothesis that the presence of volatiles from fungus-infected cadavers promotes production of winged offspring.
4. The response of the pea aphid parasitoid Aphidius ervi Halliday to colonies containing hosts infected 1 and 3 days previously was assessed. Wasps initiated fewer attacks on 1-day-old infected colonies than on healthy colonies, with the numbers on 3-day-old fungus-infected colonies intermediate.  相似文献   

5.
1. Insect population size is regulated by both intrinsic traits of organisms and extrinsic factors. The impacts of natural enemies are typically considered to be extrinsic factors, however insects have traits that affect their vulnerability to attack by natural enemies, and thus intrinsic and extrinsic factors can interact in their effects on population size. 2. Pea aphids Acyrthosiphon pisum Harris (Hemiptera: Aphididae) in New York and Maryland that are specialised on alfalfa are approximately two times more physiologically resistant to parasitism by Aphidius ervi Haliday (Hymenoptera: Braconidae) than pea aphids specialised on clover. To assess the potential influence of this genetically based difference in resistance to parasitism on pea aphid population dynamics, pea aphids, A. ervi, and other natural enemies of aphids in clover and alfalfa fields were sampled. 3. Rates of successful parasitism by A. ervi were higher and pea aphid population sizes were lower in clover, where the aphids are less resistant to parasitism. In contrast, mortality due to a fungal pathogen of pea aphids was higher in alfalfa. Generalist aphid predators did not differ significantly in density between the crops. 4. To explore whether intrinsic resistance to parasitism influences field dynamics, the relationship between resistance and successful field parasitism in 12 populations was analysed. The average level of resistance of a population strongly predicts rates of successful parasitism in the field. The ability of the parasitoid to regulate the aphid may vary among pea aphid populations of different levels of resistance.  相似文献   

6.
Seasonal abundance of resident parasitoids and predatory flies, and corresponding soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), densities were assessed in soybean fields from 2003 to 2006 at two locations in lower Michigan. Six parasitoid and nine predatory fly species were detected in 4 yr by using potted plants infested with soybean aphid placed in soybean fields. The parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) and the predatory flies Aphidoletes aphidimyza Rondani (Diptera: Cecidomyiidae), and Allograpta obliqua Say (Diptera: Syrphidae) were most numerous. Generally, L. testaceipes was more abundant late in the soybean growing season, but it also occurred during soybean vegetative growth; A. obliqua was more abundant during vegetative growth; and A. aphidimyza was common throughout the season. Soybean plants were visually inspected to estimate densities of soybean aphid, mummified aphids, and immature predatory flies. From 2003 to 2006, parasitism rates were inversely correlated with aphid density: percentage of parasitism was always very low (< or = 0.1%) at high aphid densities (> 100 aphids per plant), and higher parasitism, up to 17%, was observed at very low aphid densities (< 1 aphid per plant). Populations of immature predatory flies, particularly A. aphidimyza, generally increased in soybean fields with increasing soybean aphid populations, but aphids always outnumbered immature flies by 100-21,000-fold when flies were detected. Rearing field-collected aphid in 2006 substantiated that parasitism varied widely, with parasitism in most cases < 10%. Based on findings of low parasitism and predation, positive response to changing aphid densities by predatory flies but not parasitoids, early season abundance primarily of predatory flies, and past findings on these taxa's diversity and abundance, we discuss the potential use of exotic parasitoids and predatory flies to enhance soybean aphid biological control.  相似文献   

7.
Abstract.Different stages of presumptive winged morphs (males, gynoparae and alate virginoparae) of the blackberry‐cereal aphid, Sitobion fragariae , were exposed to attack by Aphidius ervi . Even though the mechanism influencing wing development in the three aphid morphs differs, the effects of parasitism were similar. Alatiform structures were completely inhibited in all three morphs when the initial attack took place in their first or early second stadium. The disruption of wing development also resulted in apterous/alate‐intermediate forms when aphids were attacked from first (males and gynoparae) or early second (alate virginoparae) up to the fourth larval stadium. The fact that wing development was still disrupted when aphids with well developed wingbuds were parasitized indicates that the early stages of parasitization were influential. Thus, the morphogenetic effects may be exerted by the parasitoid egg or calyx fluid.  相似文献   

8.
The effect of aphid resistance in plant cultivars on parasitism of Myzus persicae (Sulzer) and Brevicoryne brassicae (Linnaeus) by Aphidius colemani Viereck was investigated under laboratory conditions using three cultivars of common cabbage, Brassica oleracea var. capitata. Significantly greater aphid populations were found on cv. Derby Day (green-leaved, susceptible to both aphid species), regardless of the presence or absence of parasitoids, compared with cv. Minicole (green-leaved, partially resistant with antibiosis factors for B. brassicae) or cv. Ruby Ball (red-leaved, partially resistant with antixenosis factors for B. brassicae). Minicole had the greatest proportion of parasitized aphids and Derby Day the least. A significantly lower percentage of emerged parasitoids were recorded on Minicole for both aphid species compared with Derby Day and Ruby Ball. The implication of the results are discussed in relation to the integrated control of aphids.  相似文献   

9.
In animals, inducible morphological defences against natural enemies mostly involve structures that are protective or make the individual invulnerable to future attack. In the majority of such examples, predators are the selecting agent while examples involving parasites are much less common. Aphids produce a winged dispersal morph under adverse conditions, such as crowding or poor plant quality. It has recently been demonstrated that pea aphids, Acyrthosiphon pisum, also produce winged offspring when exposed to predatory ladybirds, the first example of an enemy‐induced morphological change facilitating dispersal. We examined the response of A. pisum to another important natural enemy, the parasitoid Aphidius ervi, in two sets of experiments. In the first set of experiments, two aphid clones both produced the highest proportion of winged offspring when exposed as colonies on plants to parasitoid females. In all cases, aphids exposed to male parasitoids produced a higher mean proportion of winged offspring than controls, but not significantly so. Aphid disturbance by parasitoids was greatest in female treatments, much less in male treatments and least in controls, tending to match the pattern of winged offspring production. In a second set of experiments, directly parasitised aphids produced no greater proportion of winged offspring than unparasitised controls, thus being parasitised itself is not used by aphids for induction of the winged morph. The induction of wing development by parasitoids shows that host defences against parasites may also include an increased rate of dispersal away from infected habitats. While previous work has shown that parasitism suppresses wing development in parasitised individuals, our experiments are the first to demonstrate a more indirect influence of parasites on insect polyphenism. Because predators and parasites differ fundamentally in a variety of attributes, our finding suggests that the wing production in response to natural enemies is of general occurrence in A. pisum and, perhaps, in other aphids.  相似文献   

10.
Mutualisms with facultative, non-essential heritable microorganisms influence the biology of many insects, and they can have major effects on insect host fitness in certain situations. One of the best-known examples is found in aphids where the facultative endosymbiotic bacterium Hamiltonella defensa confers protection against hymenopterous parasitoids. This symbiont is widely distributed in aphids and related insects, yet its defensive properties have only been tested in two aphid species. In a wild population of the grain aphid, Sitobion avenae, we identified several distinct strains of endosymbiotic bacteria, including Hamiltonella. The symbiont had no consistent effect on grain aphid fecundity, though we did find a significant interaction between aphid genotype by symbiont status. In contrast to findings in other aphid species, Hamiltonella did not reduce aphid susceptibility to two species of parasitoids (Aphidius ervi and Ephedrus plagiator), nor did it affect the fitness of wasps that successfully completed development. Despite this, experienced females of both parasitoid species preferentially oviposited into uninfected hosts when given a choice between genetically identical individuals with or without Hamiltonella. Thus, although Hamiltonella does not always increase resistance to parasitism, it may reduce the risk of parasitism in its aphid hosts by making them less attractive to searching parasitoids.  相似文献   

11.
Activity of antagonists in winter and early spring as well as in late summer and autumn plays an important role in the control of cereal aphid populations. Indeed, parasitoids active early in the year are important to avoid high aphid densities. Late summer and autumn correspond to the transition period between two wheat cultures, and parasitoid activity would thus reduce aphid infestation. During these critical periods, other crops like rye-grass and red clover containing alternative hosts could play the role of parasitoid reservoirs. During 1996, parasitoid activity was measured by trap planting in wheat, rye-grass, red clover and fallow grassland. In each plot, early spring was characterized by an important parasitoid activity, while aphids remained at a low level. Later in spring, activity decreased, and aphid development began even during this period. During the summer, when aphids reached their population peak, parasitoid activity rose again. Percentage of parasitism of aphids sampled was only important during summer in red clover and rye-grass. In wheat and fallow grassland, percentage of parasitism remained at a low level. The role of synchronization between parasitoid activity and aphid development is discussed.  相似文献   

12.
Aphid clonal resistance to a parasitoid fails under heat stress   总被引:1,自引:0,他引:1  
Parasitoid virulence and host resistance are complex interactions depending on metabolic rate and cellular activity, which in aphids additionally implicate heritable secondary symbionts among the Enterobacteriaceae. As performance of the parasitoid, the aphid host and its symbionts may differentially respond to temperature, the success or failure of aphid parasitism is difficult to predict when temperature varies. We tested the hypothesis that resistance of the pea aphid Acyrthosiphon pisum to the parasitoid Aphidius ervi, which is linked to aphid secondary symbionts, may depend on temperature in several resistant and non-resistant aphid clonal lineages of different geographic origin and of known bacterial symbiosis, using experiments in controlled environments. Complete immunity to A. ervi at 20 degrees C in three different aphid clones whose symbiosis is characterized by the possession of Hamiltonella defensa reversed to high susceptibility at 25 degrees C and especially 30 degrees C, suggesting that the aphid's immune responses to the establishment and early development of the parasitoid is strongly reduced at moderately high temperatures. There was no evidence that a pea aphid control genotype that was susceptible to A. ervi at 20 degrees C could become more resistant as temperature increases, as has been suggested for insect fungal pathogens. By contrast, our results suggest that aphid clonal resistance to A. ervi and related parasitoids is characteristic of cool temperature conditions, similar to various other fitness attributes of aphids. Based on evidence that H. defensa symbionts characterized all three A. ervi resistant pea aphid clones studied, but was absent in control aphids that remained susceptible at all temperatures, we suggest that secondary symbiosis plays a key role in the heat sensitivity of aphid clonal resistance. Our study may also indicate that aphid natural control of variably susceptible host populations by aphid parasitoids is more likely at moderate to high temperatures.  相似文献   

13.
The evolution of associations between herbivorous insects and their parasitoids is likely to be influenced by the relationship between the herbivore and its host plants. If populations of specialized herbivorous insects are structured by their host plants such that populations on different hosts are genetically differentiated, then the traits affecting insect-parasitoid interactions may exhibit an associated structure. The pea aphid (Acyrthosiphon pisum) is a herbivorous insect species comprised of genetically distinct groups that are specialized on different host plants (Via 1991a, 1994). Here, we examine how the genetic differentiation of pea aphid populations on different host plants affects their interaction with a parasitoid wasp, Aphidius ervi. We performed four experiments. (1) By exposing pea aphids from both alfalfa and clover to parasitoids from both crops, we demonstrate that pea aphid populations that are specialized on alfalfa are successfully parasitized less often than are populations specialized on clover. This difference in parasitism rate does not depend upon whether the wasps were collected from alfalfa or clover fields. (2) When we controlled for potential differences in aphid and parasitoid behavior between the two host plants and ensured that aphids were attacked, we found that pea aphids from alfalfa were still parasitized less often than pea aphids from clover. Thus, the difference in parasitism rates is not due to behavior of either aphids or wasps, but appears to be a physiologically based difference in resistance to parasitism. (3) Replicates of pea aphid clones reared on their own host plant and on a common host plant, fava bean, exhibited the same pattern of resistance as above. Thus, there do not appear to be nutritional or secondary chemical effects on the level of physiological resistance in the aphids due to feeding on clover or alfalfa, and therefore the difference in resistance on the two crops appears to be genetically based. (4) We assayed for genetic variation in resistance among individual pea aphid clones collected from clover fields and found no detectable genetic variation for resistance to parasitism within two populations sampled from clover. This is in contrast to Henter and Via's (1995) report of abundant genetic variation in resistance to this parasitoid within a pea aphid population on alfalfa. Low levels of genetic variation may be one factor that constrains the evolution of resistance to parasitism in the populations of pea aphids from clover, leading them to remain more susceptible than populations of the same species from alfalfa.  相似文献   

14.
Biological control, as a major component of pest management strategies, uses natural biological agents to reduce pest populations. Studying the interaction among Aphis craccivora and its parasitoids including, Lysiphlebus fabarum, Binodoxys acalephae, and Aphidius matricariae in 2016 and 2017 in Tehran Parke-Shahr, showed positive, significant correlations in all cases between the densities of three parasitoid species and that of aphid nymphs and adults. The density of the parasitoids increased by increasing the density of the aphids. The parasitoids showed aggregative behavior in response to different densities of the host. There was a positive density-dependent correlation between the density of A. craccivora and rate of parasitism. Parasitism rates of nymphs and adult aphids by L. fabarum, B. acalephae, and A. matricariae increased or decreased along with decline or increase in the population of the aphid host. In 2016 spring, the highest rates of parasitism on aphid nymphs by L. fabarum, B. acalephae, and A. matricariae were 46.82, 23.09, and 17.16%, respectively. In 2017 spring, the highest rates of parasitism on aphid nymphs by L. fabarum, B. acalephae, and A. matricariae were 48.97, 21.77, and 15.06%, respectively. So, given the accordance between changes in aphid population and that of parasitoids, and parasitoids’ efficacy in Tehran’s polluted air, they can be used as biological agents in the management of A. craccivora population.  相似文献   

15.
Learning, defined as changes in behavior that occur due to past experience, has been well documented for nearly 20 species of hymenopterous parasitoids. Few studies, however, have explored the influence of learning on population-level patterns of host use by parasitoids in field populations. Our study explores learning in the parasitoid Aphidius ervi Haliday that attacks pea aphids, Acyrthosiphon pisum (Harris). We used a sequence of laboratory experiments to investigate whether there is a learned component in the selection of red or green aphid color morphs. We then used the results of these experiments to parameterize a model that examines whether learned behaviors can explain the changes in the rates of parasitism observed in field populations in South-central Wisconsin, USA. In the first of two experiments, we measured the sequence of host choice by A. ervi on pea aphid color morphs and analyzed this sequence for patterns in biased host selection. Parasitoids exhibited an inherent preference for green aphid morphs, but this preference was malleable; initial encounters with red aphids led to a greater chance of subsequent orientation towards red aphids than predicted by chance. In a second experiment, we found no evidence that parasitoids specialize on red or green morphs; for the same parasitoids tested in trials separated by 2 h, color preference in the first trial did not predict color preference in the second, as would be expected if they differed in fixed preferences or exhibited long-term (> 2 h) learning. Using data from the two experiments, we parameterized a population dynamics model and found that learning of the magnitude observed in our experiments leads to biased parasitism towards the most common color morph. This bias is sufficient to explain changes in the ratio of aphid color morphs observed in field sites over multiple years. Our study suggests that for even relatively simple organisms, learned behaviors may be important for explaining the population dynamics of their hosts.  相似文献   

16.
Proportions of specialist and generalist primary parasitoids have been described by the resource breadth and the trade-off hypothesis. These alternative hypotheses predict either decreased or increased, respectively, parasitism rate of shared aphid species by specialist parasitoids. We tested both hypotheses and the confounding effects of landscape structure and agricultural intensification (AI) using extensive samplings of aphids and their parasitoids in Polish agricultural landscapes. Abundances, species composition of aphids, primary parasitoids, and parasitism rate of aphids by specialists and generalist parasitoids were analysed. Contrary to our expectations we found equally decreased parasitism rates by both types of primary parasitoids at higher aphid densities and thus proportion of specialists to generalists did not change with increasing host density. In line with the resource breadth hypothesis, specialist parasitoids had always lower abundances and parasitism rates than generalist parasitoids. Landscape diversity and agricultural intensification did not influence the host-parasitoid population dynamics. We speculate that these contrasting results could be caused by the additional density effects of secondary parasitoids. We conclude that simplistic two-trophic-level population models are not able to fully describe the complex dynamics of trophic networks. We also argue that agricultural intensification has lower effects on abundance and effectiveness of parasitoids than predicted by respective predator–prey models and empirical studies performed in controlled and artificial conditions.  相似文献   

17.
Many aphid species possess wingless (apterous) and winged (alate) stages, both of which can harbor parasitoids at various developmental stages. Alates can either be parasitized directly or can bear parasitoids eggs or larvae resulting from prior parasitism of alatoid nymphs. Winged aphids bearing parasitoid eggs or young larvae eventually still engage in long-distance flights, thereby facilitating parasitoid dispersal. This may have a number of important implications for biological control of aphids by parasitoids. In this study, we determined the effect of parasitism by Aphelinus varipes (Hymenoptera: Aphelinidae) on wing development and flight of the soybean aphid, Aphis glycines (Hemiptera: Aphididae). We also quantified the influence of aphid flight distance on subsequent A. varipes development. Parasitism by A. varipes was allowed at different A. glycines developmental stages (i.e., alatoid 3rd and 4th-instar nymphs, alates) and subsequent aphid flight was measured using a computer-monitored flight mill. Only 35% of aphids parasitized as L3 alatoid nymphs produced normal winged adults compared to 100% of L4 alatoids. Flight performance of aphids parasitized as 4th-instar alatoid nymphs 24 or 48 h prior to testing was similar to that of un-parasitized alates of identical age, but declined sharply for alates that had been parasitized as 4th-instar alatoid nymphs 72 and 96 h prior to testing. Flight performance of aphids parasitized as alate adults for 24 h was not significantly different from un-parasitized alates of comparable ages. Flight distance did not affect parasitoid larval or pupal development times, or the percent mummification of parasitized aphids. Our results have implications for natural biological control of A. glycines in Asia and classical biological control of the soybean aphid in North America.  相似文献   

18.
Few studies have linked density dependence of parasitism and the tritrophic environment within which a parasitoid forages. In the non-crop plant-aphid, Centaurea nigraUroleucon jaceae system, mixed patterns of density-dependent parasitism by the parasitoids Aphidius funebris and Trioxys centaureae were observed in a survey of a natural population. Breakdown of density-dependent parasitism revealed that density dependence was inverse in smaller colonies but direct in larger colonies (>20 aphids), suggesting there is a threshold effect in parasitoid response to aphid density. The CV2 of searching parasitoids was estimated from parasitism data using a hierarchical generalized linear model, and CV2>1 for A. funebris between plant patches, while for T. centaureae CV2>1 within plant patches. In both cases, density independent heterogeneity was more important than density-dependent heterogeneity in parasitism. Parasitism by T. centaureae increased with increasing plant patch size. Manipulation of aphid colony size and plant patch size revealed that parasitism by A. funebris was directly density dependent at the range of colony sizes tested (50–200 initial aphids), and had a strong positive relationship with plant patch size. The effects of plant patch size detected for both species indicate that the tritrophic environment provides a source of host density independent heterogeneity in parasitism, and can modify density-dependent responses.  相似文献   

19.
Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies.  相似文献   

20.
Blueberry scorch virus, a commercially important Carlavirus in highbush blueberry, Vaccinium corymbosum L., is vectored by aphids (Hemiptera: Aphididae). We surveyed the aphids, primary parasitoids (Hymenoptera: Aphelinidae, Braconidae), and associated secondary parasitoids (Hymenoptera: Charipidae, Megaspilidae, Pteromalidae) on highbush blueberry and other Vaccinium in the Pacific Northwest from 1995 to 2006, with samples concentrated in 2005 and 2006, to lay the groundwork for augmentative biological control. Ericaphis fimbriata (Richards) was the principal aphid. The dominant parasitoid species were Praon unicum Smith, Aphidius n. sp., A. sp., and Aphidius ervi Haliday. Their frequency in relation to the other primary parasitoids varied significantly with geographical area; P. unicum dominated the frequency distribution in southwestern British Columbia, A. n. sp., west of the Cascades, and A. sp. and A. ervi east of the Cascades. Among the secondary parasitoids, pteromalids dominated, and their frequency in relation to the other secondary parasitoids was lowest in southwestern British Columbia. The parasitization rate for P. unicum and A. n. sp. in southwestern British Columbia increased from May or June to a maximum of 0.080 +/- 0.024 and 0.090 +/- 0.084 (SD), respectively, in late July or early August. P. unicum emerged in the spring 4 wk before A. n. sp. The parasitization rate for P. unicum was lower in conventional than organic fields. Whereas aphid density increased monotonically, P. unicum had two spring peaks. A simulation model showed that these peaks could reflect discrete generations. Releases of insectary-reared P. unicum at 150 or 450 DD above 5.6 degrees C, summing from 1 January, may effectively augment the natural spring populations by creating overlapping generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号