共查询到20条相似文献,搜索用时 8 毫秒
1.
Rap1, a mercenary among the Ras-like GTPases 总被引:1,自引:0,他引:1
E.W. Frische 《Developmental biology》2010,340(1):1-9
The small Ras-like GTPase Rap1 is an evolutionary conserved protein that originally gained interest because of its capacity to revert the morphological phenotype of Ras-transformed fibroblasts. Rap1 is regulated by a large number of stimuli that include growth factors and cytokines, but also physical force and osmotic stress. Downstream of Rap1, a plethora of effector molecules has been proposed on the basis of biochemical studies. Here, we present an overview of genetic studies on Rap1 in various model organisms and relate the observed phenotypes to in vitro studies. The picture that emerges is one in which Rap1 is a versatile regulator of morphogenesis, by regulating diverse processes that include establishment of cellular polarity, cell-matrix interactions and cell-cell adhesion. Surprisingly, genetic experiments indicate that in the various model organisms, Rap1 uses distinct effector molecules that impinge upon the actin cytoskeleton and adhesion molecules. 相似文献
2.
The Ras-like family of small GTPases includes, among others, Ras, Rap1, R-ras, and Ral. The family is characterized by similarities in the effector domain. While the function of Ras is, at least in part, elucidated, little is known about other members of the family. Currently, much attention is focused on the small GTPase Rap1. Initially, this member was identified as a transformation suppressor protein able to revert the morphological phenotype of Ras-transformed fibroblasts. This has led to the hypothesis that Rap1 antagonizes Ras by interfering in Ras effector function. Recent analysis revealed that Rap1 is activated rapidly in response to activation of a variety of receptors. Rap1 activation is mediated by several second messengers, including calcium, diacylglycerol, and cAMP. Guanine nucleotide exchange factors (GEFs) have been identified that mediate these effects. The most interesting GEF is Epac, an exchange protein directly activated by cAMP, thus representing a novel cAMP-induced, protein kinase A-independent pathway. Furthermore, Rap1 is inactivated by specific GTPase-activating proteins (GAPs), one of which is regulated through an interaction with Galphai. While Ras and Rap1 may share some effector pathways, evidence is accumulating that Ras and Rap1 each regulate unique cellular processes in response to various extracellular ligands. For Rap1 these functions may include the control of cell morphology. 相似文献
3.
The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration 总被引:10,自引:0,他引:10
McLeod SJ Li AH Lee RL Burgess AE Gold MR 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(3):1365-1371
Stromal cell-derived factor-1 (SDF-1) is a potent chemoattractant for B cells and B cell progenitors. Although the binding of SDF-1 to its receptor, CXCR4, activates multiple signaling pathways, the mechanism by which SDF-1 regulates cell migration is not completely understood. In this report we show that activation of the Rap GTPases is important for B cells to migrate toward SDF-1. We found that treating B cells with SDF-1 resulted in the rapid activation of both Rap1 and Rap2. Moreover, blocking the activation of Rap1 and Rap2 via the expression of a Rap-specific GTPase-activating protein significantly reduced the ability of B cells to migrate toward SDF-1. Conversely, expressing a constitutively active form of Rap2 increased SDF-1-induced B cell migration. Thus, the Rap GTPases control cellular processes that are important for B cells to migrate toward SDF-1. 相似文献
4.
Li Y Kim JG Kim HJ Moon MY Lee JY Kim J Kim SC Song DK Kim YS Park JB 《Free radical biology & medicine》2012,52(9):1796-1805
Phagocytic NADPH oxidase plays a critical role in superoxide generation in macrophage cells. Small GTPases, including Rac1 and Rac2, have been implicated in the regulation of NADPH oxidase activity. Rap1, which has no effect in a cell-free system of oxidase activation, recently has been proven to colocalize with cytochrome b(558). In addition, neutrophils from rap1A(-/-) mice reduce fMLP-stimulated superoxide production. Here, we tried to determine whether Rap1 also plays a role in the production of superoxide. IgG-opsonized zymosan (IOZ) particles treatment induced Rap1 activation and superoxide generation. Knock-down of Rap1 by si-Rap1 suppressed IOZ-induced superoxide formation. Sh-RhoA also reduced superoxide levels, but 8CPT-2Me-cAMP, an activator of Epac1 (a guanine nucleotide exchange factor (GEF) of Rap1), could recover the levels to the control value. When cells were stimulated by IOZ, Rap1 and Rac1 were translocated to the membrane, and then interacted with p22(phox). 8CPT-2Me-cAMP rescued sh-RhoA-induced reduction of the interaction between Rac1 and p22(phox), and enhanced lysophosphatidic acid (LPA)-induced increase of their interaction. Moreover, Rac1 activity was increased by both LPA and 8CPT-2Me-cAMP when treated with IOZ particles. Si-Vav2 impaired GTP-Rac1 levels in response to 8CPT-2Me-cAMP/IOZ. Phosphorylation of RhoA activates Rac1 in response to IOZ by the enhanced binding of phospho-RhoA to RhoGDI, leading to the release of Rac1 from the Rac1-RhoGDI complex. In conclusion, IOZ treatment induces Rap1 activation and phosphorylation of RhoA, which in turn cause Rac1 activation and promote Rac1 translocation to the membrane leading to binding with p22(phox) that activates NADPH oxidase and produces superoxide. 相似文献
5.
6.
Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons 总被引:1,自引:0,他引:1
The Rap family of small GTPases is implicated in the mechanisms of synaptic plasticity, particularly synaptic depression. Here we studied the role of Rap in neuronal morphogenesis and synaptic transmission in cultured neurons. Constitutively active Rap2 expressed in hippocampal pyramidal neurons caused decreased length and complexity of both axonal and dendritic branches. In addition, Rap2 caused loss of dendritic spines and spiny synapses, and an increase in filopodia-like protrusions and shaft synapses. These Rap2 morphological effects were absent in aspiny interneurons. In contrast, constitutively active Rap1 had no significant effect on axon or dendrite morphology. Dominant-negative Rap mutants increased dendrite length, indicating that endogenous Rap restrains dendritic outgrowth. The amplitude and frequency of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-mediated miniature excitatory postsynaptic currents (mEPSCs) decreased in hippocampal neurons transfected with active Rap1 or Rap2, associated with reduced surface and total levels of AMPA receptor subunit GluR2. Finally, increasing synaptic activity with GABA(A) receptor antagonists counteracted Rap2's inhibitory effect on dendrite growth, and masked the effects of Rap1 and Rap2 on AMPA-mediated mEPSCs. Rap1 and Rap2 thus have overlapping but distinct actions that potentially link the inhibition of synaptic transmission with the retraction of axons and dendrites. 相似文献
7.
Willem-Jan Pannekoek 《生物化学与生物物理学报:生物膜》2009,1788(4):790-171
Rap proteins are Ras-like small GTP-binding proteins that amongst others are involved in the control of cell-cell and cell-matrix adhesion. Several Rap guanine nucleotide exchange factors (RapGEFs) function to activate Rap. These multi-domain proteins, which include C3G, Epacs, PDZ-GEFs, RapGRPs and DOCK4, are regulated by various different stimuli and may function at different levels in junction formation. Downstream of Rap, a number of effector proteins have been implicated in junctional control, most notably the adaptor proteins AF6 and KRIT/CCM1. In this review, we will highlight the latest findings on the Rap signaling network in the control of epithelial and endothelial cell-cell junctions. 相似文献
8.
Sehrawat S Cullere X Patel S Italiano J Mayadas TN 《Molecular biology of the cell》2008,19(3):1261-1270
Rap1 GTPase activation by its cAMP responsive nucleotide exchange factor Epac present in endothelial cells increases endothelial cell barrier function with an associated increase in cortical actin. Here, Epac1 was shown to be responsible for these actin changes and to colocalize with microtubules in human umbilical vein endothelial cells. Importantly, Epac activation with a cAMP analogue, 8-pCPT-2'O-Me-cAMP resulted in a net increase in the length of microtubules. This did not require cell-cell interactions or Rap GTPase activation, and it was attributed to microtubule growth as assessed by time-lapse microscopy of human umbilical vein endothelial cell expressing fluorophore-linked microtubule plus-end marker end-binding protein 3. An intact microtubule network was required for Epac-mediated changes in cortical actin and barrier enhancement, but it was not required for Rap activation. Finally, Epac activation reversed microtubule-dependent increases in vascular permeability induced by tumor necrosis factor-alpha and transforming growth factor-beta. Thus, Epac can directly promote microtubule growth in endothelial cells. This, together with Rap activation leads to an increase in cortical actin, which has functional significance for vascular permeability. 相似文献
9.
Kim JG Moon MY Kim HJ Li Y Song DK Kim JS Lee JY Kim J Kim SC Park JB 《The Journal of biological chemistry》2012,287(7):5145-5155
Phagocytosis occurs primarily through two main processes in macrophages: the Fcγ receptor- and the integrin αMβ2-mediated processes. Complement C3bi-opsonized particles are known to be engulfed through integrin αMβ2-mediated process, which is regulated by RhoA GTPase. C3 toxin fused with Tat-peptide (Tat-C3 toxin), an inhibitor of the Rho GTPases, was shown to markedly inhibit the phagocytosis of serum (C3bi)-opsonized zymosans (SOZs). However, 8CPT-2Me-cAMP, an activator of exchange protein directly activated by cAMP (Epac, Rap1 guanine nucleotide exchange factor), restored the phagocytosis of the SOZs that was previously inhibited by the Tat-C3 toxin. In addition, a constitutively active form of Rap1 GTPase (CA-Rap1) also restored the phagocytosis that was previously reduced by a dominant negative form of RhoA GTPase (DN-RhoA). This suggests that Rap1 can replace the function of RhoA in the phagocytosis. Inversely, CA-RhoA rescued the phagocytosis that was suppressed by DN-Rap1. These findings suggest that both RhoA and Rap1 GTPases collectively regulate the phagocytosis of SOZs. In addition, filamentous actin was reduced by the Tat-C3 toxin, which was again restored by 8CPT-2Me-cAMP. Small interfering profilin suppressed the phagocytosis, suggesting that profilin is essential for the phagocytosis of SOZs. Furthermore, 8CPT-2Me-cAMP increased the co-immunoprecipitation of profilin with Rap1, whereas Tat-C3 toxin decreased that of profilin with RhoA. Co-immunoprecipitations of profilin with actin, Rap1, and RhoA GTPases were augmented in the presence of GTPγS rather than GDP. Therefore, we propose that both Rap1 and RhoA GTPases regulate the formation of filamentous actin through the interaction between actin and profilin, thereby collectively inducing the phagocytosis of SOZs in macrophages. 相似文献
10.
11.
Once overlooked as an evolutionary vestige, the primary cilium has recently been the focus of intensive studies. Mounting data show that this organelle is a hub for various signaling pathways during vertebrate embryonic development and pattern formation. However, how cilia form and how cilia execute the sensory function still remain poorly understood. Cilia dysfunction is correlated with a wide spectrum of human diseases, now termed ciliopathies. Various small GTPases, including the members in Arf/Arl, Rab, and Ran subfamilies, have been implicated in cilia formation and/or function. Here we review and discuss the role of one particular group of small GTPase, Arf/Arl, in the context of cilia and ciliopathy. 相似文献
12.
13.
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the ROR family consisting of ROR1 and ROR2. RORs contain two distinct extracellular cysteinerich domains and one transmembrane domain. Within the intracellular portion, ROR1 possesses a tyrosine kinase domain, two serine/threonine-rich domains and a proline-rich domain. RORs have been studied in the context of embryonic patterning and neurogenesis through a variety of homologs. These physiologic functions are dichotomous based on the requirement of the kinase domain. A growing literature has established ROR1 as a marker for cancer, such as in CLL and other blood malignancies. In addition, ROR1 is critically involved in progression of a number of blood and solid malignancies. ROR1 has been shown to inhibit apoptosis, potentiate EGFR signaling, and induce epithelial-mesenchymal transition (EMT). Importantly, ROR1 is only detectable in embryonic tissue and generally absent in adult tissue, making the protein an ideal drug target for cancer therapy. 相似文献
14.
Breslin A Denniss FA Guinn BA 《Biochemical and biophysical research communications》2007,363(3):462-465
We describe the emerging role of Synovial Sarcoma X breakpoint 2 Interacting Protein (SSX2IP) in cancer and its still largely unknown function in human cells. In rodents, SSX2IP has been shown to play a role in adherens junctions and cell adhesion, while in chickens SSX2IP was identified by virtue of its regulation by the light cycle and circadian rhythms. In humans, SSX2IP was identified through its interaction with the cancer-testis gene SSX2. However SSX2IP is expressed in a range of normal and fetal tissues unlike SSX2. SSX2IP containing constructs indicated that SSX2IP could be expressed in the nucleus and cytoplasm of transfected human cells, however, SSX2IP expression has been subsequently shown to peak on the surface of myeloid leukaemia cells during mitosis. Here we discuss the current knowledge of SSX2IP function in several species and the growing evidence that SSX2IP may be a suitable target for leukaemia immunotherapy. 相似文献
15.
Jenei V Deevi RK Adams CA Axelsson L Hirst DG Andersson T Dib K 《The Journal of biological chemistry》2006,281(46):35008-35020
We found that engagement of beta2 integrins on human neutrophils increased the levels of GTP-bound Rap1 and Rap2. Also, the activation of Rap1 was blocked by PP1, SU6656, LY294002, GF109203X, or BAPTA-AM, which indicates that the downstream signaling events in Rap1 activation involve Src tyrosine kinases, phosphoinositide 3-kinase, protein kinase C, and release of calcium. Surprisingly, the beta2 integrin-induced activation of Rap2 was not regulated by any of the signaling pathways mentioned above. However, we identified nitric oxide as the signaling molecule involved in beta2 integrin-induced activation of Rap1 and Rap2. This was illustrated by the fact that engagement of beta2 integrins increased the production of nitrite, a stable end-product of nitric oxide. Furthermore, pretreatment of neutrophils with Nomega-monomethyl-L-arginine, or 1400W, which are inhibitors of inducible nitric-oxide synthase, blocked beta2 integrin-induced activation of Rap1 and Rap2. Similarly, Rp-8pCPT-cGMPS, an inhibitor of cGMP-dependent serine/threonine kinases, also blunted the beta2 integrin-induced activation of Rap GTPases. Also nitric oxide production and its downstream activation of cGMP-dependent serine/threonine kinases were essential for proper neutrophil adhesion by beta2 integrins. Thus, we made the novel findings that beta2 integrin engagement on human neutrophils triggers production of nitric oxide and its downstream signaling is essential for activation of Rap GTPases and neutrophil adhesion. 相似文献
16.
Rsr1 and Rap1 GTPases are activated by the same GTPase-activating protein and require threonine 65 for their activation 总被引:3,自引:0,他引:3
J L Holden M S Nur-E-Kamal L Fabri E Nice A Hammacher H Maruta 《The Journal of biological chemistry》1991,266(26):16992-16995
The Rsr1 protein of Saccharomyces cerevisiae has been shown to be essential for bud site selection (Bender, A., and Pringle, J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9976-9980). This protein of 272 amino acids shares approximately 50% sequence identity with both Ras and Rap GTPases. However, neither GTP binding nor GTPase activity of the Rsr1 protein has been reported. The Rsr1 protein shares with human Rap1 GTPases the four specific motifs, i.e. Gly-12, residues 32-40, Ala-59, and residues 64-70, that are required for GAP3-dependent activation of the Rap1 GTPases. In this paper we demonstrate that the intrinsic GTPase activity of the Rsr1 protein is stimulated by GAP3 purified from bovine brain cytosol. The Rsr1 GTPase is not activated by either GAP1 or GAP2 which are specific for the Ras and Rho GTPases, respectively. Thus, it appears that the Rsr1 GTPase is a new member of the Rap1 GTPase family. Replacement of Gly-12 by Val in the Rsr1 GTPase completely abolishes the GAP3-dependent activation. The chimeric GTPases, Ras(1-60)/Rsr1(61-168) and Rsr1(1-65)/Ras(66-189), are activated by GAP3 but not by GAP1. Replacement of Thr-65 by Ser in the latter chimeric GTPase completely abolishes the GAP3-dependent activation, indicating that Thr-65 is required for distinguishing GAP3 from GAP1. We have previously shown that Gln-61 and Ser-65 are sufficient to determine the GAP1 specificity. Replacement of Thr-35 by Ala in the common effector domain (residues 32-40) of the chimeric Ras/Rsr1 GTPases completely abolishes GAP3-dependent activation. 相似文献
17.
Coronary heart disease and stroke, caused by rupture of atherosclerotic plaques in the arterial wall, are the major causes of death in industrialized countries. A key event in the pathogenesis of atherosclerosis is the transformation of smooth muscle cells and in particular of macrophages into foam cells, a result of massive accumulation of lipid droplets. It is well known that the formation of these lipid droplets is a result of the uninhibited uptake of modified lipoproteins by scavenger receptors. However, only more recently has it become apparent that a special set of lipid droplet associated proteins - the PAT protein family (perilipin, adipophilin, TIP47, S3-12 and OXPAT) - is fundamental to the formation, growth, stabilization and functions of lipid droplets. Here we review recent findings and assess the current state of knowledge on lipid droplets and their PAT proteins in atherogenesis. 相似文献
18.
Eric D Brown 《Biochimie et biologie cellulaire》2005,83(6):738-746
Establishing the roles of conserved gene products in bacteria is of fundamental importance to our understanding of the core protein complement necessary to sustain cellular life. P-loop GTPases and related ATPases represent an abundant and remarkable group of proteins in bacteria that, in many cases, have evaded characterization. Here, efforts aimed at understanding the cellular function of a group of 8 conserved, poorly characterized genes encoding P-loop GTPases, era, obg, trmE, yjeQ, engA, yihA, hflX, ychF, and a related ATPase, yjeE, are reviewed in considerable detail. While concrete cellular roles remain elusive for all of these genes and considerable pleiotropy has plagued their study, experiments to date have frequently implicated the ribosome. In the case of era, obg, yjeQ, and engA, the evidence is most consistent with roles in ribosome biogenesis, though the prediction is necessarily putative. While the protein encoded in trmE clearly has a catalytic function in tRNA modification, the participation of its GTPase domain remains obscure, as do the functions of the remaining proteins. A full understanding of the cellular functions of all of these important proteins remains the goal of ongoing studies of cellular phenotype and protein biochemistry. 相似文献
19.
Sabbatini ME Chen X Ernst SA Williams JA 《The Journal of biological chemistry》2008,283(35):23884-23894
Rap1 is a member of the Ras superfamily of small GTP-binding proteins and is localized on pancreatic zymogen granules. The current study was designed to determine whether GTP-Rap1 is involved in the regulation of amylase secretion. Rap1A/B and the two Rap1 guanine nucleotide exchange factors, Epac1 and CalDAG-GEF III, were identified in mouse pancreatic acini. A fraction of both Rap1 and Epac1 colocalized with amylase in zymogen granules, but only Rap1 was integral to the zymogen granule membranes. Stimulation with cholecystokinin (CCK), carbachol, and vasoactive intestinal peptide all induced Rap1 activation, as did calcium ionophore A23187, phorbol ester, forskolin, 8-bromo-cyclic AMP, and the Epac-specific cAMP analog 8-pCPT-2'-O-Me-cAMP. The phospholipase C inhibitor U-73122 abolished carbachol- but not forskolin-induced Rap1 activation. Co-stimulation with carbachol and 8-pCPT-2'-O-Me-cAMP led to an additive effect on Rap1 activation, whereas a synergistic effect was seen on amylase release. Although the protein kinase A inhibitor H-89 abolished forskolin-stimulated CREB phosphorylation, it did not modify forskolin-induced GTP-Rap1 levels, excluding PKA participation. Overexpression of Rap1 GTPase-activating protein, which blocked Rap1 activation, reduced the effect of 8-bromo-cyclic AMP, 8-pCPT-2'-O-Me-cAMP, and vasoactive intestinal peptide on amylase release by 60% and reduced CCK- as well as carbachol-stimulated pancreatic amylase release by 40%. These findings indicate that GTP-Rap1 is required for pancreatic amylase release. Rap1 activation not only mediates the cAMP-evoked response via Epac1 but is also involved in CCK- and carbachol-induced amylase release, with their action most likely mediated by CalDAG-GEF III. 相似文献
20.
D'Silva Nisha J.; Jacobson Kerry L.; Ott Sabrina M.; Watson Eileen L. 《American journal of physiology. Cell physiology》1998,274(6):C1667
Rap1 hasrecently been identified on the secretory granule membrane and plasmamembrane of rat parotid acinar cells (N. J. D'Silva, D. DiJulio, C. B. Belton, K. L. Jacobson, and E. L. Watson. J. Histochem. Cytochem. 45: 965-973, 1997). In thepresent study, we examined the cellular redistribution of Rap1following treatment of acini with isoproterenol (ISO), the-adrenergic agonist, and determined the relationship betweentranslocation and amylase release. In the presence of ISO, Rap1translocated to the cytosol in a concentration- and time-dependentmanner; this effect was not mimicked by the muscarinic agonist,carbachol. Translocation was maximal at 1 µM ISO and paralleledamylase release immediately after ISO stimulation. Rap1 translocationand amylase release were blocked by the -adrenergic antagonist,propranolol, whereas okadaic acid, a downstream secretory inhibitor,significantly blocked amylase release but did not inhibit Rap1redistribution. Results suggest that the translocation of Rap1 iscausally related to secretion and that the role of Rap1 in secretion isat a site proximal to the exocytotic event. 相似文献