首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a great desire to relate the patterns of endogenous peptides in blood to human disease and drug response. The best practices for the preparation of blood fluids for analysis are not clear and also relatively few of the peptides in blood have been identified by tandem mass spectrometry. We compared a number of sample preparation methods to extract endogenous peptides including C18 reversed phase, precipitation, and ultrafiltration. We examined the results of these sample preparation methods by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and liquid chromatography-tandem mass spectrometry (MS/MS) using MALDI-TOF/TOF and electrospray ionization-ion trap. Peptides from solid-phase extraction with C18 in the range of hundreds of femtomoles per spot were detected from the equivalent of 1 μL of serum by MALDI-TOF. We observed endogenous serum peptides from fibrinogen α- and β-chain, complement C3, α-2-HS-glycoprotein, albumin, serine (or cysteine) proteinase inhibitor, factor VIII, plasminogen, immunoglobulin, and other abundant blood proteins. However, we also recorded significant MS/MS spectra from tumor necrosis factor-α-, major histocompatibility complex-, and angiotensin-related peptides, as well as peptides from collagens and other low-abundance proteins. Amino acid substitutions were detected and a phosphorylated peptide was also observed. This is the first time the endogenous peptides of fetal serum have been examined by MS and where peptides from low-abundance proteins, phosphopeptides, and amino acid substitutions were detected.  相似文献   

2.
Serum potentially carries an archive of important histological information whose determination could serve to improve early disease detection. The analysis of serum, however, is analytically challenging due to the high dynamic concentration range of constituent protein/peptide species, necessitating extensive fractionation prior to mass spectrometric analyses. The low molecular weight (LMW) serum proteome is that protein/peptide fraction from which high molecular weight proteins, such as albumin, immunoglobulins, transferrin, and lipoproteins, have been removed. This LMW fraction is made up of several classes of physiologically important proteins such as cytokines, chemokines, peptide hormones, as well as proteolytic fragments of larger proteins. Centrifugal ultrafiltration of serum was used to remove the large constituent proteins resulting in the enrichment of the LMW proteins/peptides. Because albumin is known to bind and transport small molecules and peptides within the circulatory system, the centrifugal ultrafiltration was conducted under solvent conditions effecting the disruption of protein-protein interactions. The LMW serum proteome sample was digested with trypsin, fractionated by strong cation exchange chromatography, and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. Analysis of the tandem mass spectra resulted in the identification of over 340 human serum proteins; however, not a single peptide from serum albumin was observed. The large number of proteins identified demonstrates the efficacy of this method for the removal of large abundant proteins and the enrichment of the LMW serum proteome.  相似文献   

3.
A method to extract peptides and low molecular weight proteins from serum under denaturing conditions using acetonitrile containing 0.1% trifluoroacetic acid has been developed. The extraction procedure precipitates large, abundant proteins to simplify subsequent mass spectral analysis. This sample preparation method provides an efficient way to extract serum peptides, enabling them to be compared and identified using different mass spectrometry approaches. Surface-enhanced laser desorption/ionization-time of flight mass spectrometry analysis of mouse blood serum samples prepared by this method allowed detection of two markers which were significantly reduced in mice with B cell lymphoma tumor. One of these markers has been identified as apolipoprotein A-II.  相似文献   

4.
Peptidome analysis has received increasing attention in recent years. Cancer diagnosis by serum peptidome has also been reported by peptides' profiling for discovery of peptide biomarkers. Tissue, which may have a higher biomarker concentration than blood, has not been investigated extensively by means of peptidome analysis. Here, a method for the peptidome analysis of mouse liver was developed by the combination of size exclusion chromatography (SEC) prefractionation with nano-liquid chromatography-tamdem mass spectrometry (nanoLC-MS/MS) analysis. The extracted peptides from mouse liver were separated according to their molecular weight using a size exclusion column. MALDI-TOF MS was used to characterize the molecular weight distribution of the peptides in fractions eluted from the SEC column. The low molecular weight (LMW) (MW < 3000 Da) peptides in the collected fractions were directly analyzed by LC-MS/MS which resulted in the identification of 1181 unique peptides (from 371 proteins). The high molecular weight (HMW) (MW > 3000 Da) peptides in the early two fractions from the SEC column were first digested with trypsin, and the resulted digests were then analyzed by LC-MS/MS, which led to the identification of 123 and 127 progenitor proteins of the HMW peptides in fractions 1 and 2, respectively. Analysis of the peptides' cleavage sites showed that the peptides are cleaved in regulation, which may reflect the protease activity and distribution in body, and also represent the biological state of the tissue and provide a fresh source for biomarker discovery.  相似文献   

5.
The low molecular weight plasma proteome and its biological relevance are not well defined; therefore, experiments were conducted to directly sequence and identify peptides observed in plasma and serum protein profiles. Protein fractionation, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) profiling, and liquid-chromatography coupled to MALDI tandem mass spectrometry (MS/MS) sequencing were used to analyze the low molecular weight proteome of heparinized plasma. Four fractionation techniques using functionally derivatized 96-well plates were used to extract peptides from plasma. Tandem TOF was successful for identifying peptides up to m/z 5500 with no prior knowledge of the sequence and was also used to verify the sequence assignments for larger ion signals. The peptides (n>250) sequenced in these profiles came from a surprisingly small number of proteins (n approximately 20), which were all common to plasma, including fibrinogen, complement components, antiproteases, and carrier proteins. The cleavage patterns were consistent with those of known plasma proteases, including initial cleavages by thrombin, plasmin and complement proteins, followed by aminopeptidase and carboxypeptidase activity. On the basis of these data, we discuss limitations in biomarker discovery in the low molecular weight plasma or serum proteome using crude fractionation coupled to MALDI-MS profiling.  相似文献   

6.
We report an innovative multiplexed liquidchromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS)-based assay for rapidly measuring a large number of disease specific protein biomarkers in human serum. Furthermore, this approach uses stable isotope dilution methodology to reliably quantify candidate protein biomarkers. Human serum was diluted using a stable isotope labeled proteome (SILAP) standard prepared from the secretome of pancreatic cell lines, subjected to immunoaffinity removal of the most highly abundant proteins, trypsin digested, and analyzed by LC-MRM/MS. The method was found to be precise, linear, and specific for the relative quantification of 72 proteins when analyte response was normalized to the relevant internal standard (IS) from the SILAP. The method made it possible to determine statistically different concentrations for three proteins (cystatin M, IGF binding protein 7, and villin 2) in control and pancreatic cancer patient samples. This method proves the feasibility of using a SILAP standard in combination with stable isotope dilution LC-MRM/MS analysis of tryptic peptides to compare changes in the concentration of candidate protein biomarkers in human serum.  相似文献   

7.
Identification of fusion proteins has contributed significantly to our understanding of cancer progression, yielding important predictive markers and therapeutic targets. While fusion proteins can be potentially identified by mass spectrometry, all previously found fusion proteins were identified using genomic (rather than mass spectrometry) technologies. This lack of MS/MS applications in studies of fusion proteins is caused by the lack of computational tools that are able to interpret mass spectra from peptides covering unknown fusion breakpoints (fusion peptides). Indeed, the number of potential fusion peptides is so large that the existing MS/MS database search tools become impractical even in the case of small genomes. We explore computational approaches to identifying fusion peptides, propose an algorithm for solving the fusion peptide identification problem, and analyze the performance of this algorithm on simulated data. We further illustrate how this approach can be modified for human exons prediction.  相似文献   

8.
Kuhn E  Wu J  Karl J  Liao H  Zolg W  Guild B 《Proteomics》2004,4(4):1175-1186
A general method for the quantification of proteins in human serum was developed using mass spectrometry (MS) and stable isotope-labeled synthetic peptides as internal standards. Using this approach, C-reactive protein (CRP), a diagnostic marker of rheumatoid arthritis (RA), was detected in serum samples taken from patients with either erosive or nonerosive RA and compared to healthy individuals. Small volumes of serum samples were enriched for low-abundance proteins through the selective removal of human serum albumin (HSA), immunoglobulin G (IgG), and haptoglobin. After depletion of abundant proteins, the complexity of the protein mixture was further simplified using size exclusion chromatography (SEC) to fractionate denatured proteins into discrete molecular weight ranges. Fractions of interest containing CRP, M(r) = 25 000, were pooled, digested with trypsin, and then fixed quantities of the synthetic peptides were added to the mixture. The mixture of tryptic peptides was subsequently analyzed by nanoflow chromatography-tandem MS (nanoLC-MS/MS) using multiple-reaction monitoring (MRM) on a triple quadrupole mass spectrometer (TQ-MS). The ratio of transition ions derived from the endogenous and isotope-labeled peptides provided a quantitative measure of CRP in the original samples as assessed by independent measurement of CRP in the same patient samples using an immunoassay. The use of isotope-labeled synthetic peptides and MRM is a powerful analytical method for the prescreening of candidate protein biomarkers in human serum prior to antibody and immunoassay development.  相似文献   

9.
Mass spectrometric analysis of the low-molecular weight (LMW) range of the serum/plasma proteome is revealing the existence of large numbers of previously unknown peptides and protein fragments predicted to be derived from low-abundance proteins. This raises the question of why such low abundance molecules would be retained at detectable levels in the circulation, instead of being rapidly cleared and excreted. Theoretical models of biomarker production and association with serum carrier proteins have been developed to elucidate the mechanisms governing biomarker half-life in the bloodstream. These models predict that the vast majority of LMW biomarkers exist in association with circulating high molecular mass carrier proteins. Moreover, the total serum/plasma concentration of the biomarker is largely determined by the clearance rate of the carrier protein, not the free-phase biomarker clearance itself. These predictions have been verified experimentally using molecular mass fractionation of human serum before mass spectrometry sequence analysis. These principles have profound implications for biomarker discovery and measurement.  相似文献   

10.
Many low-molecular weight (LMW) proteins in egg-white are potentially bioactive, but the mass range and number of these are not yet fully characterized. The aim of the present study was to map the LMW protein profile in egg-white and provide the basis for further understanding of the physiological function of these proteins. For this purpose, six time points (days 0, 1, 2, 3, 4, 5 of incubation) were selected in an attempt to delineate the LMW proteomic profile in egg-white and its changes during early chicken embryological development. Samples were pretreated using gel chromatography techniques prior to analysis by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Protein search focused on the mass range m/z 1,000 to 8,000. One hundred and fourteen mass signal peaks of LMW proteins ranging from m/z 1,035.88 to 7,112.91 were detected at all six time points. The observed changes in the LMW protein profile during development were highly dynamic. Eighty six novel mass signal peaks of LMW proteins were generated during incubation, the origin of which could be assigned to the high-molecular weight protein fractions.The list of egg-white LMW proteins provided in this paper is by far the most comprehensive and is intended to serve as a starting point for the isolation and functional characterization of interesting LMW proteins which may play a crucial role in early embryo nutrition and immunity.  相似文献   

11.
Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.  相似文献   

12.
The use of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) to acquire spectral profiles has become a common approach to detect proteomic biomarkers of disease. MALDI-MS signals may represent both intact proteins as well as proteolysis products. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis can tentatively identify the corresponding proteins Here, we describe the application of a data analysis utility called FragMint, which combines MALDI-MS spectral data with LC-MS/MS based protein identifications to generate candidate protein fragments consistent with both types of data. This approach was used to identify protein fragments corresponding to spectral signals in MALDI-MS analyses of unfractionated human serum. The serum also was analyzed by one-dimensional SDS-PAGE and bands corresponding to the MALDI-MS signal masses were excised and subjected to in-gel digestion and LC-MS/MS analysis. Database searches mapped all of the identified peptides to abundant blood proteins larger than the observed MALDI-MS signals. FragMint identified fragments of these proteins that contained the MS/MS identified sequences and were consistent with the observed MALDI-MS signals. This approach should be generally applicable to identify protein species corresponding to MALDI-MS signals.  相似文献   

13.
Human saliva contains a large number of proteins and peptides (salivary proteome) that help maintain homeostasis in the oral cavity. Global analysis of human salivary proteome is important for understanding oral health and disease pathogenesis. In this study, large-scale identification of salivary proteins was demonstrated by using shotgun proteomics and two-dimensinal gel electrophoresis-mass spectrometry (2-DE-MS). For the shotgun approach, whole saliva proteins were prefractionated according to molecular weight. The smallest fraction, presumably containing salivary peptides, was directly separated by capillary liquid chromatography (LC). However, the large protein fractions were digested into peptides for subsequent LC separation. Separated peptides were analyzed by on-line electrospray tandem mass spectrometry (MS/MS) using a quadrupole-time of flight mass spectrometer, and the obtained spectra were automatically processed to search human protein sequence database for protein identification. Additionally, 2-DE was used to map out the proteins in whole saliva. Protein spots 105 in number were excised and in-gel digested; and the resulting peptide fragments were measured by matrix-assisted laser desorption/ionization-mass spectrometry and sequenced by LC-MS/MS for protein identification. In total, we cataloged 309 proteins from human whole saliva by using these two proteomic approaches.  相似文献   

14.
An efficient protocol for in-gel digestion of Coomassie-stained protein spots has been established for mass analysis by matrix-assisted laser desorption/ionization-mass spectrometry (MS) and for tandem mass spectrometry (MS/MS). Identification of Vigna mungo leaf proteome from two-dimensional gel electrophoresis was done employing the protocol. About 300 proteins spots were consistently detected in three replicate gels. Optimization of the destaining process, digestion using 25 ng/μl trypsin in 20 μl trypsin buffer, and omission of peptide extraction step significantly increased the number of matched peptides and sequence coverage. Reliable characterization of 109 proteins by MS as well as tandem sequencing by MS/MS (PRIDE Accession no. 15318) suggests the potential application of the modified protocol for high throughput proteome analysis to unravel disputes in characterization of plant proteins in fundamental or applied research.  相似文献   

15.
One of the challenges associated with large-scale proteome analysis using tandem mass spectrometry (MS/MS) and automated database searching is to reduce the number of false positive identifications without sacrificing the number of true positives found. In this work, a systematic investigation of the effect of 2MEGA labeling (N-terminal dimethylation after lysine guanidination) on the proteome analysis of a membrane fraction of an Escherichia coli cell extract by 2-dimensional liquid chromatography MS/MS is presented. By a large-scale comparison of MS/MS spectra of native peptides with those from the 2MEGA-labeled peptides, the labeled peptides were found to undergo facile fragmentation with enhanced a1 or a1-related (a(1)-17 and a(1)-45) ions derived from all N-terminal amino acids in the MS/MS spectra; these ions are usually difficult to detect in the MS/MS spectra of nonderivatized peptides. The 2MEGA labeling alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI and ESI MS experiments. 2MEGA labeling was found not only to increase the number of peptides and proteins identified but also to generate enhanced a1 or a1-related ions as a constraint to reduce the number of false positive identifications. In total, 640 proteins were identified from the E. coli membrane fraction, with each protein identified based on peptide mass and sequence match of one or more peptides using MASCOT database search algorithm from the MS/MS spectra generated by a quadrupole time-of-flight mass spectrometer. Among them, the subcellular locations of 336 proteins are presently known, including 258 membrane and membrane-associated proteins (76.8%). Among the classified proteins, there was a dramatic increase in the total number of integral membrane proteins identified in the 2MEGA-labeled sample (153 proteins) versus the unlabeled sample (77 proteins).  相似文献   

16.
Protein identification by mass spectrometry is mainly based on MS/MS spectra and the accuracy of molecular mass determination. However, the high complexity and dynamic ranges for any species of proteomic samples, surpass the separation capacity and detection power of the most advanced multidimensional liquid chromatographs and mass spectrometers. Only a tiny portion of signals is selected for MS/MS experiments and a still considerable number of them do not provide reliable peptide identification. In this article, an in silico analysis for a novel methodology of peptides and proteins identification is described. The approach is based on mass accuracy, isoelectric point (pI), retention time (t(R)) and N-terminal amino acid determination as protein identification criteria regardless of high quality MS/MS spectra. When the methodology was combined with the selective isolation methods, the number of unique peptides and identified proteins increases. Finally, to demonstrate the feasibility of the methodology, an OFFGEL-LC-MS/MS experiment was also implemented. We compared the more reliable peptide identified with MS/MS information, and peptide identified with three experimental features (pI, t(R), molecular mass). Also, two theoretical assumptions from MS/MS identification (selective isolation of peptides and N-terminal amino acid) were analyzed. Our results show that using the information provided by these features and selective isolation methods we could found the 93% of the high confidence protein identified by MS/MS with false-positive rate lower than 5%.  相似文献   

17.
Electrophoretic and chromatographic sample preparations were compared and together detected the presence of some 600 types of protein products in human serum. Proteins from crude serum preseparated by ionic electrophoresis, chromatography, or a combination of both were analyzed. Proteins were digested with trypsin or chymotrypsin. Naturally occurring peptides were also collected by reversed-phase chromatography. The resulting peptides were identified by tandem mass spectrometry. The peptides were either desorbed by a laser from a metal chip into a quadrupole-time-of-flight mass spectrometer or ionized as an electro-spray from reversed-phase chromatography via a metal needle under voltage into an ion-trap mass spectrometer. All of the commonly known proteins associated with serum were detected, and the two mass spectrometers agreed on the identity of abundant serum proteins. Preseparation of serum proteins prior to digestion markedly enhanced the capacity to detect un-common proteins from blood. Electrophoretic- and chromatography-based experiments were found to be complementary. Many novel cellular proteins not previously associated with serum were recorded.  相似文献   

18.
In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions.  相似文献   

19.
Differences among techniques for high-abundant protein depletion   总被引:3,自引:0,他引:3  
The need to identify protein or peptide biomarkers via readily available biological samples like serum, plasma, or cerebrospinal fluid is often hindered by a few particular proteins present at relatively high concentrations. The ability to remove these proteins specifically, reproducibly, and with high selectivity is increasingly important in proteomic studies, and success in this procedure is leading to an ever-increasing list of lower abundant proteins being identified in these biological fluids. The current work addresses some of the potential problems in depleting proteins in typical biomarker studies, including nonspecific binding during depletion procedures and whether low molecular weight (LMW) species bind to the column in a so-called "sponge" effect caused by the ability of albumin or other high-abundant proteins to bind peptides or protein fragments. LC-MS/MS methods were applied to the comparative analysis of an IgG-based immunodepletion method and a Cibacron blue (CB)-dye-based method, for specificity of removing targeted proteins (binding fraction), as well as for assessing efficiency of target removal. This analysis was extended to examine the effects of repeated use of materials (cycles of binding and elution), in order to assess potential for carryover of one sample to the next. Capacity studies and efficiency of protein removal from the serum samples were followed for the IgG-based system using both immunochemical assays (ELISA) as well as LC-MS/MS methods. Additionally, the IgG-based system was further characterized for the removal of LMW polypeptides by nonspecific binding. We conclude that the IgG-based system provided effective removal of targeted proteins, with minimal carryover, high longevity, and minimal nonspecific binding. Significant differences are noted between the depletion techniques employed, and this should be considered based on the expectations set during experimental design.  相似文献   

20.
De novo interpretation of tandem mass spectrometry (MS/MS) spectra provides sequences for searching protein databases when limited sequence information is present in the database. Our objective was to define a strategy for this type of homology-tolerant database search. Homology searches, using MS-Homology software, were conducted with 20, 10, or 5 of the most abundant peptides from 9 proteins, based either on precursor trigger intensity or on total ion current, and allowing for 50%, 30%, or 10% mismatch in the search. Protein scores were corrected by subtracting a threshold score that was calculated from random peptides. The highest (p < .01) corrected protein scores (i.e., above the threshold) were obtained by submitting 20 peptides and allowing 30% mismatch. Using these criteria, protein identification based on ion mass searching using MS/MS data (i.e., Mascot) was compared with that obtained using homology search. The highest-ranking protein was the same using Mascot, homology search using the 20 most intense peptides, or homology search using all peptides, for 63.4% of 112 spots from two-dimensional polyacrylamide gel electrophoresis gels. For these proteins, the percent coverage was greatest using Mascot compared with the use of all or just the 20 most intense peptides in a homology search (25.1%, 18.3%, and 10.6%, respectively). Finally, 35% of de novo sequences completely matched the corresponding known amino acid sequence of the matching peptide. This percentage increased when the search was limited to the 20 most intense peptides (44.0%). After identifying the protein using MS-Homology, a peptide mass search may increase the percent coverage of the protein identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号