首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural tube defects and folate: case far from closed   总被引:1,自引:0,他引:1  
Neural tube closure takes place during early embryogenesis and requires interactions between genetic and environmental factors. Failure of neural tube closure is a common congenital malformation that results in morbidity and mortality. A major clinical achievement has been the use of periconceptional folic acid supplements, which prevents approximately 50-75% of cases of neural tube defects. However, the mechanism underlying the beneficial effects of folic acid is far from clear. Biochemical, genetic and epidemiological observations have led to the development of the methylation hypothesis, which suggests that folic acid prevents neural tube defects by stimulating cellular methylation reactions. Exploring the methylation hypothesis could direct us towards additional strategies to prevent neural tube defects.  相似文献   

2.
Neural tube defects (NTDs) are the second most common birth defects in the United States. It is well known that folic acid supplementation decreases about 70% of all NTDs, although the mechanism by which this occurs is still relatively unknown. The current theory is that folic acid deficiency ultimately leads to depletion of the methyl pool, leaving critical genes unmethylated, and, in turn, their improper expression leads to failure of normal neural tube development. Recently, new studies in human cell lines have shown that folic acid deficiency and DNA hypomethylation can lead to misexpression of microRNAs (miRNAs). Misexpression of critical miRNAs during neural development may lead to a subtle effect on neural gene regulation, causing the sometimes mild to severely debilitating range of phenotypes exhibited in NTDs. This review seeks to cohesively integrate current information regarding folic acid deficiency, methylation cycles, neural development, and miRNAs to propose a potential model of NTD formation. In addition, we have examined the relevant gene pathways and miRNAs that are predicted to affect them, and based on our investigation, we have devised a basic template of experiments for exploring the idea that miRNA misregulation may be linked to folic acid deficiency and NTDs. genesis 48:282–294, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
Folic acid deficiency during pregnancy is believed to be a high‐risk factor for neural tube defects (NTDs). Disturbed epigenetic modifications, including miRNA regulation, have been linked to the pathogenesis of NTDs in those with folate deficiency. However, the mechanism by which folic acid‐regulated miRNA influences this pathogenesis remains unclear. It is believed that DNA methylation is associated with dysregulated miRNA expression. To clarify this issue, here we measured the methylation changes of 22 miRNAs in 57 human NTD cases to explore whether such changes are involved in miRNA regulation in NTD cases through folate metabolism. In total, eight of the 22 miRNAs tested reduced their methylation modifications in NTD cases, which provide direct evidence of the roles of interactions between DNA methylation and miRNA level in these defects. Among the findings, there was a significant association between folic acid concentration and hsa‐let‐7 g methylation level in NTD cases. Hypomethylation of hsa‐let‐7 g increased its own expression level in both NTD cases and cell models, which indicated that hsa‐let‐7 g methylation directly regulates its own expression. Overexpression of hsa‐let‐7 g, along with its target genes, disturbed the migration and proliferation of SK‐N‐SH cells, implying that hsa‐let‐7 g plays important roles in the prevention of NTDs by folic acid. In summary, our data suggest a relationship between aberrant methylation of hsa‐let‐7 g and disturbed folate metabolism in NTDs, implying that improvements in nutrition during early pregnancy may prevent such defects, possibly via the donation of methyl groups for miRNAs.  相似文献   

5.
Although normally folic acid is given during pregnancy, presumably to prevent neural tube defects, the mechanisms of this protection are unknown. More importantly it is unclear whether folic acid has other function during development. It is known that folic acid re-methylates homocysteine (Hcy) to methionine by methylene tetrahydrofolate reductase-dependent pathways. Folic acid also generates high-energy phosphates, behaves as an antioxidant and improves nitric oxide (NO) production by endothelial NO synthase. Interestingly, during epigenetic modification, methylation of DNA/RNA generate homocysteine unequivocally. The enhanced overexpression of methyl transferase lead to increased yield of Hcy. The accumulation of Hcy causes vascular dysfunction, reduces perfusion in the muscles thereby causing musculopathy. Another interesting fact is that children with severe hyperhomocysteinaemia (HHcy) have skeletal deformities, and do not live past teenage. HHcy is also associated with the progeria syndrome. Epilepsy is primarily caused by inhibition of gamma-amino-butyric-acid (GABA) receptor, an inhibitory neurotransmitter in the neuronal synapse. Folate deficiency leads to HHcy which then competes with GABA for binding on the GABA receptors. With so many genetic and clinical manifestations associated with folate deficiency, we propose that folate deficiency induces epigenetic alterations in the genes and thereby results in disease.  相似文献   

6.
Neural tube defects (NTDs) refer to a cluster of neurodevelopmental conditions associated with failure of neural tube closure during embryonic development. Worldwide prevalence of NTDs ranges from approximately 0.5 to 60 per 10,000 births, with regional and population-specific variation in prevalence. Numerous environmental and genetic influences contribute to NTD etiology; accumulating evidence from population-based studies has demonstrated that folate status is a significant determinant of NTD risk. Folate-mediated one-carbon metabolism (OCM) is essential for de novo nucleotide biosynthesis, methionine biosynthesis, and cellular methylation reactions. Periconceptional maternal supplementation with folic acid can prevent occurrence of NTDs in the general population by up to 70%; currently several countries fortify their food supply with folic acid for the prevention of NTDs. Despite the unambiguous impact of folate status on NTD risk, the mechanism by which folic acid protects against NTDs remains unknown. Identification of the mechanism by which folate status affects neural tube closure will assist in developing more efficacious and better targeted preventative measures. In this review, we summarize current research on the relationship between folate status and NTDs, with an emphasis on linking genetic variation, folate nutriture, and specific metabolic and/or genomic pathways that intersect to determine NTD outcomes.  相似文献   

7.
8.
裴丽君  李竹 《遗传》2004,26(2):239-243
神经管畸形和颅面畸形是最常见的出生缺陷,由遗传和环境因素共同作用所致,大规模的人群流行病学研究已证实,叶酸能降低发生这类畸形的危险。叶酸缺乏是神经管和颅面畸形发生的主要环境因素,但其机制尚不清楚,通过对与叶酸代谢有关的还原叶酸载体(reduced folate carrier,RFC)的生化特点、生理功能、还原叶酸载体基因(RFC1)结构功能、调控、表达及其与叶酸水平和神经管颅面畸形的关系等研究进展进行综述,从而为神经管和颅面畸形的病因学研究提出可能的候选基因。 Abstract: Neural tube and craniofacial defects are common birth defects which are ascribed to the combination of genetic and environmental factors. The population epidemiological studies suggested that periconceptional use of multivitamins containing folic acid can reduce a woman’s risk of having a child with neural tube and craniofacial defects. It’s a major environmental factor that periconceptinal women with deficiency of folic acid may increase their risk for delivering babies with neural tube and craniofacial defects, but the mechanism by which folic acid facilitated this risk rediction is unknown. This paper reviews folate transport carrier, Reduced Folate Carrier(RFC)’s characteristics in biological chemistry, physiological function, the folate transport mechanism, structure, function, regulation and expression of reduced folate carrier gene(RFC1), and the relationship between RFC1 with plasm or erythrocyte folate level and neural tube defects, et al. It is suggested a etiologic hypothesis in investigation of candidate gene encoding specific folat-related pathways of neural tube and craniofacial defects.  相似文献   

9.
《Epigenetics》2013,8(6):394-398
Folic acid supplementation during pregnancy has known beneficial effects. It reduces risk of neural tube defects and low birth weight. Folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. However, most data on the effects of folate on the epigenome is derived from animal or in vitro models. We examined the relationship between cord blood methylation and maternal folic acid intake, cord blood folate and homocysteine using data from 24 pregnant women. Genome-wide methylation was determined by the level of methylation of LINE-1 repeats using Pyrosequencing. We show that cord plasma homocysteine (p = 0.001, r = -0.688), but not serum folate or maternal folic acid intake, is inverse correlated with LINE-1 methylation. This remained significant after correction for potential confounders (p = 0.004). These data indicate that levels of folate-associated intermediates in cord blood during late pregnancy have significant consequences for the fetal epigenome.  相似文献   

10.
11.
Supplementation with folic acid during pregnancy is known to reduce the risk of neural tube defects and low birth weight. It is thought that folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. We examined the effects of folate on the human methylome using quantitative interrogation of 27,578 CpG loci associated with 14,496 genes at single-nucleotide resolution across 12 fetal cord blood samples. Consistent with previous studies, the majority of CpG dinucleotides located within CpG islands exhibited hypomethylation while those outside CpG islands showed mid-high methylation. However, for the first time in human samples, unbiased analysis of methylation across samples revealed a significant correlation of methylation patterns with plasma homocysteine, LINE-1 methylation and birth weight centile. Additionally, CpG methylation significantly correlated with either birth weight or LINE-1 methylation were predominantly located in CpG islands. These data indicate that levels of folate-associated intermediates in cord blood reflect their influence and consequences for the fetal epigenome and potentially on pregnancy outcome. In these cases, their influence might be exerted during late gestation or reflect those present during the peri-conceptual period.Key words: cord blood, birth weight, folic acid, homocysteine, BeadArray, hierarchical clustering, Illumina  相似文献   

12.
A procedure which uses hot methanolic HCl to digest fresh tissue and simultaneously convert the fatty acids of the leaf lipids to the corresponding methyl esters is described. Extraction of the fatty acid methyl esters into a small volume (0.3 ml) of hexane means that a sample for GLC analysis can be taken directly from the tube used for the digestion/methylation reaction. The procedure provides a fatty acid analysis which is comparable to that obtained by a more conventional technique involving separate extraction, saponification, and methylation steps, but the overall yield is reduced by 10-20%. The analysis can be made quantitative by including an internal standard with the tissue sample.  相似文献   

13.
The genetic basis of mammalian neurulation   总被引:2,自引:0,他引:2  
More than 80 mutant mouse genes disrupt neurulation and allow an in-depth analysis of the underlying developmental mechanisms. Although many of the genetic mutants have been studied in only rudimentary detail, several molecular pathways can already be identified as crucial for normal neurulation. These include the planar cell-polarity pathway, which is required for the initiation of neural tube closure, and the sonic hedgehog signalling pathway that regulates neural plate bending. Mutant mice also offer an opportunity to unravel the mechanisms by which folic acid prevents neural tube defects, and to develop new therapies for folate-resistant defects.  相似文献   

14.
Food fortification with synthetic folic acid (FA), along with supplementation, results in a marked increase in the population total of serum folates and unmetabolized folic acid (UMFA). Despite the success in reducing neural tube defects at birth in the intended target population (women of childbearing age), the potential deleterious effects of chronically high levels of UMFA in susceptible segments of the population require further investigation. In this study, we examine the effects of FA concentrations, ranging from depletion to supraphysiological levels, on markers of proliferation, DNA methylation, and DNA damage and repair in a human lymphoblastoid cell line (LCL). We note that both low and high levels of FA similarly impact global DNA methylation, cytome biomarkers measured through the CBMN assay, DNA damage induced by oxidative stress, and DNA base excision repair gene expression.  相似文献   

15.
The present study investigated the roles of folic acid and DNA methyltransferases (DNMTs) in the differentiation of neural stem cells (NSCs). Neonatal rat NSCs were grown in suspended neurosphere cultures and identified by their expression of SOX2 protein and capacity for self-renewal. Then NSCs were assigned to five treatment groups for cell differentiation: control (folic acid-free differentiation medium), low folic acid (8 μg/mL), high folic acid (32 μg/mL), low folic acid and DNMT inhibitor zebularine (8 μg/mL folic acid and 150 nmol/mL zebularine), and high folic acid and zebularine (32 μg/mL folic acid and 150 nmol/mL zebularine). After 6 days of cell differentiation, immunocytochemistry and western blot analyses were performed to identify neurons by β-tubulin III protein expression and astrocytes by GFAP expression. We observed that folic acid increased DNMT activity which may be regulated by the cellular S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and the abundance of neurons but decreased the number of astrocytes. Zebularine blocked these effects of folic acid. In conclusion, folic acid acts through elevation of DNMT activity to increase neuronal differentiation and decrease astrocytic differentiation in NSCs.  相似文献   

16.
Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12) are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12) deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12) deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12) lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.  相似文献   

17.
Folate deficiency is implicated in the causation of neural tube defects (NTDs). The preventive effect of periconceptional folic acid supplement use is partially explained by the treatment of a deranged folate-dependent one carbon metabolism, which provides methyl groups for DNA-methylation as an epigenetic mechanism. Here, we hypothesize that variations in DNA-methylation of genes implicated in the development of NTDs and embryonic growth are part of the underlying mechanism. In 48 children with a neural tube defect and 62 controls from a Dutch case-control study and 34 children with a neural tube defect and 78 controls from a Texan case-control study, we measured the DNA-methylation levels of imprinted candidate genes (IGF2-DMR, H19, KCNQ1OT1) and non-imprinted genes (the LEKR/CCNL gene region associated with birth weight, and MTHFR and VANGL1 associated with NTD). We used the MassARRAY EpiTYPER assay from Sequenom for the assessment of DNA-methylation. Linear mixed model analysis was used to estimate associations between DNA-methylation levels of the genes and a neural tube defect. In the Dutch study group, but not in the Texan study group we found a significant association between the risk of having an NTD and DNA methylation levels of MTHFR (absolute decrease in methylation of −0.33% in cases, P-value = 0.001), and LEKR/CCNL (absolute increase in methylation: 1.36% in cases, P-value = 0.048), and a borderline significant association for VANGL (absolute increase in methylation: 0.17% in cases, P-value = 0.063). Only the association between MTHFR and NTD-risk remained significant after multiple testing correction. The associations in the Dutch study were not replicated in the Texan study. We conclude that the associations between NTDs and the methylation of the MTHFR gene, and maybe VANGL and LEKKR/CNNL, are in line with previous studies showing polymorphisms in the same genes in association with NTDs and embryonic development, respectively.  相似文献   

18.
Methionine, folic acid, betaine and choline interact in the one-carbon metabolism which provides methyl groups for methylation reactions. An optimal intake of these nutrients during pregnancy is required for successful completion of fetal development and evidence is growing that they could be involved in metabolic long-term programming. However, the biological pathways involved in the action of these nutrients are still poorly known. This study investigated the interaction between methyl donors and protein content in maternal diet during the preconceptual, pregnancy and lactation periods and the consequences on the rat offspring in the short and long term. Methyl donor supplementation reduced leptin secretion in offspring, whereas insulin levels were mostly affected by protein restriction. The joint effect of protein restriction and methyl donor excess strongly impaired postnatal growth in both gender and long term weight gain in male offspring only, without affecting food intake. In addition, rats born from protein restricted and methyl donor supplemented dams gained less weight when fed a hypercaloric diet. Methylation of the leptin gene promoter in adipose tissue was increased in methyl donor supplemented groups but not affected by protein restriction only. These results suggest that maternal methyl donor supplementation may influence energy homeostasis in a gender-dependent manner, without affecting food intake. Moreover, we showed that macronutrients and micronutrients in maternal diet interact to influence the programming of the offspring.  相似文献   

19.
Periconceptional supplementation of folic acid to the diet of women is considered a great success for a public health intervention. Higher folate status, either by supplementation, or via the mandatory fortification of grain products in the United States, has led to significant reduction in the incidence of neural tube defects. Besides birth defects, folate deficiency has been linked to a variety of morbidities, most notably to increased risk for cancer. However, recent evidence suggests that excess folate may be detrimental — for birth defect incidence or in the progression of cancer. How folate mediates beneficial or detrimental effects is not well understood. It is also unknown what molecular responses are elicited in women taking folate supplements, and thus experience a bolus of folate on top of the status achieved by fortification. To characterize the response to a periconceptional regimen of supplementation with folinic acid, we performed gene expression profiling experiments on uterus tissue of pregnant mice with either wildtype alleles or targeted disruption at the folate receptor 4 locus. We observed that, depending on the genetic background, folinic acid supplementation affects expression of genes that contribute to lipid metabolism, protein synthesis, mitochondrial function, cell cycle, and cell activation. The extent of the response is strongly modulated by the genetic background. Finally, we provide evidence that folinic acid supplementation in the mutant paradigm affects histone methylation status, a potential mechanism of gene regulation in this model.  相似文献   

20.
The molecular requirements for neural tube closure are complex. This is illustrated by the occurrence of neural tube defects (NTDs) in many genetic mouse mutants, which implicate a variety of genes, pathways and cellular functions. NTDs are also prevalent birth defects in humans, affecting around 1 per 1,000 pregnancies worldwide. In humans the causation is thought to involve the interplay of fetal genes and the effect of environmental factors. Recent studies on the etiology of human NTDs, as well as analysis of mouse models, have raised the question of the possible involvement of epigenetic factors in determining susceptibility. A consideration of potential causative factors in human NTDs must now include both alterations in the regulation of gene expression, through mutation of promoter or regulatory elements and the additional analysis of epigenetic regulation. Alterations in the epigenetic status can be directly modified by various environmental insults or maternal dietary factors.Key words: neural tube defects, diet, folic acid, epigenome, epigenetic regulation, methylation, chromatin, histones, acetylation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号