首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
45Ca-uptake was measured in monolayers of cultured rat aortic smooth muscle cells. Sufficient extracellular 45Ca could be removed by a 90 second cold La3+ was to reveal stimulation of 45Ca-uptake by high K+-depolarization and the vasopressor peptides angiotensin II and vasopressin. The high K+-stimulated 45Ca-influx was blocked by a dihydropyridine-type Ca2+-antagonist while that stimulated by angiotensin II or vasopressin was not. The 45Ca-influx stimulated by high K+-depolarization was additive to that stimulated by angiotensin II. Vasopressin and angiotensin II stimulated 45Ca-fluxes were not additive. It is concluded that vasopressor peptides stimulate Ca2+-entry through receptor operated Ca2+-channels which are distinct from voltage gated Ca2+-channels.  相似文献   

2.
Histamine stimulated Ca2+ uptake in synaptosomes was completely inhibited by the slow Ca2+ channel antagonists verapamil, cinnarizine and flunarizine, and slightly inhibited by nifedipine and diltiazem. Ca2+ uptake in synaptosomes depolarized or predepolarized with varying K+ concentrations was increased by histamine, in both conditions, until 30mM K+. At higher K+ concentrations histamine was not able to alter K+ effects in either conditions. 30mM K+ stimulated uptake of Ca2+ in the absence or presence of histamine was not inhibited by verapamil and diltiazem. However nifedipine slightly inhibited K+ and K+ +histamine effects. 3-Isobutyl-1-methyl-xanthine and dibutyryl cyclicAMP potentiated (10%) the uptake of Ca2+ in synaptosomes induced by histamine. Dibutyryl cyclicAMP alone however decreased the basal Ca2+ uptake in a concentration-dependent manner. Verapamil, but not diltiazem, antagonized the effects elicited by 3-isobutyl-1-methyl-xanthine and dibutyryl cyclicAMP in the presence of histamine. The data suggest that the increase in synaptosomal Ca2+ uptake induced by histamine is mediated by the activation of the voltage sensitive calcium channels, and possibly a cyclicAMP-dependent protein kinase phosphorylation can modulate the opening of Ca2+ channels.  相似文献   

3.
The voltage-sensitive calcium channel in cultured chick neural retina cells was characterized by the actions of the enantiomers of Bay K 8644 and 202-791 and other 1,4-dihydropyridines. These cells showed time- and voltage-dependent Ca2+ uptake that was stimulated by K+ depolarization and blocked by the inorganic calcium channel blockers Cd2+ and Co2+. A small fraction only (15% maximum) of the uptake was inactivated by predepolarization of the cells with 80 mM K+. Ca2+ uptake was sensitive to the 1,4-dihydropyridine calcium channel antagonists and activators. (S)-Bay K 8644 and (S)-202-791 stimulated the Ca2+ uptake, and (R)-Bay K 8644 and (R)-202-791 as well as nitrendipine and PN 200-110 inhibited Ca2+ uptake stimulated by K+ depolarization or channel activators. The K+ depolarization-stimulated uptake was inhibited by 90%, but the activator-stimulated uptake was completely blocked by the 1,4-dihydropyridine antagonists. The potencies of these agents as inhibitors of Ca2+ uptake were significantly lower than the binding affinities in membrane preparations from the same cells or their binding and pharmacologic affinities in vascular smooth muscle. K+ depolarization or (S)-Bay K 8644 induced 45Ca2+ uptake was not observed in a glial cell culture. [3H]Nitrendipine and [3H]PN 200-110 bound to membrane preparations of the cells consistent with the presence of a single type of high affinity binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We have studied the modulation by intracellular Ca2+ of the epithelial Ca2+ channel, ECaC, heterologously expressed in HEK 293 cells. Whole-cell and inside-out patch clamp current recordings were combined with FuraII-Ca2+ measurements:1. Currents through ECaC were dramatically inhibited if Ca2+ was the charge carrier. This inhibition was dependent on the extracellular Ca2+ concentration and occurred also in cells buffered intracellularly with 10 mM BAPTA.2. Application of 30 mM [Ca(2)]e induced in non-Ca2+] buffered HEK 293 cells at -80 m V an increase in intracellular Ca2+([Ca2]i) with a maximum rate of rise of 241 +/-15nM/s (n= 18 cells) and a peak value of 891 +/- 106 nM. The peak of the concomitant current with a density of 12.3 +/- 2.6 pA/pF was closely correlated with the peak of the first-time derivative of the Ca2+ transient, as expected if the Ca2+ transient is due to influx of Ca2+. Consequently, no Ca2+] signal was observed in cells transfected with the Ca2+ impermeable ECaC mutant, D542A, in which an aspartate in the pore region was neutralized.3. Increasing [Ca2+]i by dialyzing the cell with pipette solutions containing various Ca2+] concentrations, all buffered with 10 mM BAPTA, inhibited currents through ECaC carried by either Na+ or Ca2+] ions. Half maximal inhibition of Ca(2+)currents in the absence of monovalent cations occurred at 67 nM (n between 6 and 8), whereas Na+ currents in the absence of Ca2+] and Mg2+ were inhibited with an IC50 of 89 nM (n between 6 and 10). Currents through ECaC in the presence of 1 mM Ca2+ and Na+, which are mainly carried by Ca2+, are inhibited by [Ca2]i with an IC50of 82 nM (n between 6 and 8). Monovalent cation currents through the Ca2+impermeable D542A ECaC mutant were also inhibited by an elevation of [Ca2]i (IC50 = 123 nM, n between 7 and 18). 4. The sensitivity of ECaC currents in inside-out patches for [Ca2]i was slightly shifted to higher concentrations as compared with whole cell measurements. Half-maximal inhibition occurred at 169 nM if Na+ was the charge carrier (n between 4 and 11) and 228 nM at 1 mM [Ca2]e (n between 4 and 8).5. Recovery from inhibition upon washout of extracellular Ca2+ (whole-cell configuration) or removal of Ca2+ from the inner side of the channel (inside-out patches) was slow in both conditions. Half-maximal recovery was reached after 96 +/- 34 s (n= 15) in whole-cell mode and after 135 +/- 23 s (n = 17) in inside-out patches.6. We conclude that influx of Ca2+ through ECaC and [Ca2]i induce feedback inhibition of ECaC currents, which is controlled by the concentration of Ca2+ in a micro domain near the inner mouth of the channel. Slow recovery seems to depend on dissociation of Ca( 2+ from an internal Ca2+ binding site at ECaC.  相似文献   

5.
This study tested the hypothesis that 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and its previously described cardiac receptors play roles in regulating intracellular calcium homeostasis in cardiac muscle cells. This question was addressed by assessing whether 1,25-(OH)2D3 influences 45Ca2+ uptake by homogeneous cultures of adult rat ventricular cardiac muscle cells. Twenty-four h prior to the measurement of 45Ca2+ uptake, the cells were transferred to serum-free medium ([Ca2+], 1.0 mM) containing 1.0 nM 1,25(OH)2D3 or vehicle. The cells were then incubated with 45Ca2+ for periods up to 60 min at room temperature, followed by removal of excess external 45Ca2+ by washing repeatedly with La3+. Pretreating the cells with 1,25-(OH)2D3 caused 3-fold stimulation (p less than 0.005) of 45Ca2+ uptake. Stimulation of 45Ca2+ uptake required a prolonged (8-12 h) exposure to 1,25-(OH)2D3, suggesting a receptor-mediated phenomenon. Concentrations of 0.01-10 nM 1,25-(OH)2D3 yielded a dose-response curve which peaked at 1.0 nM and decreased at higher concentrations. Steroid specificity was established by the failure of 1.0 nM levels of 25-hydroxyvitamin D3, estradiol-17 beta, and progesterone to change 45Ca2+ uptake. Sucrose gradient analysis confirmed the presence of a specific 3-4 S 3H-1,25-(OH)2D3 binding component both in freshly isolated and in cultured ventricular cardiac muscle cells. The stimulatory effect of 1,25-(OH)2D3 on 45Ca2+ uptake was abolished by the concomitant incubation of the cells with cycloheximide or actinomycin D, demonstrating a requirement for protein and nucleic acid synthesis. In conclusion, these data demonstrate that 1,25-(OH)2D3 stimulates 45Ca2+ uptake in adult ventricular cardiac muscle cells by a mechanism resembling a receptor-mediated phenomenon.  相似文献   

6.
Due to the lack of specific agonists and antagonists the role of adenosine receptor subtypes with respect to their effect on the insulin secretory system is not well investigated. The A1 receptor may be linked to different 2nd messenger systems, i.e. cAMP, K+- and 45Ca2+ channel activity. Partial A1 receptor agonists are going to be developed in order to improve diabetes (increase in insulin sensitivity, lowering of FFA and triglycerides). In this study newly synthesized selective A1 receptor agonists and antagonists were investigated thereby integrating three parameters, insulin release (RIA), 45Ca2+ uptake and 86Rb+ efflux (surrogate for K+ efflux) of INS-1 cells, an insulin secretory cell line. The presence of A1-receptors was demonstrated by Western blotting. The receptor nonselective adenosine analogue NECA (5-N-ethylcarboxyamidoadenosine) at high concentration (10 microM) had no effect on insulin release and 45Ca2+ uptake which could be interpreted as the sum of effects mediated by mutual antagonistic adenosine receptor subtypes. However, an inhibitory effect mediated by A1 receptor agonism was detected at 10 nM NECA and could be confirmed by adding the A1 receptor antagonist PSB-36 (1-butyl-8-(3-noradamantyl)-3-(3-hydroxy-propyl)xanthine). NECA inhibited 86Rb+ efflux which, however, did not fit with the simultaneous inhibition of insulin secretion. The selective A1 receptor agonist CHA (N6-cyclohexyladenosine) inhibited insulin release; the simultaneously increased Ca2+ uptake (nifedipine dependent) and inhibition of 86Rb+ efflux did not fit the insulin release data. The CHA effect (even the maximum effect at 50 microM) can be increased by 10 microM NECA indicating that CHA and NECA have nonspecific and physiologically non-relevant effects on 86Rb+ efflux in addition to their A1-receptor interaction. Since PSB-36 did not influence the NECA-induced inhibition of 86Rb+ efflux, the NECA effect is not mediated by potassium channel-linked A1 receptors. The nonselective adenosine receptor antagonist caffeine increased insulin release which was reversed by CHA as expected when hypothesizing that both act via A1 receptors in this case. In conclusion, stimulation of A1 receptors by receptor selective and nonselective compounds reduced insulin release which is not coupled to opening of potassium channels (86Rb+ efflux experiments) or inhibition of calcium channels (45Ca2+ uptake experiments). It may be expected that of all pleiotropic 2nd messengers, the cAMP system (not tested here) is predominant for A1 receptor effects and the channel systems (K+ and Ca2+) are of minor importance and do not contribute to insulin release though being coupled to the receptor in other tissues.  相似文献   

7.
The effects of physiological concentrations of K+ on Mn2+ accumulation were compared in rat glial cells and neurons in culture. Increasing the K+ concentration in growth medium increased significantly the Mn2+ level of the cultivated cells, with glial cells more affected than neurons. Ethanol markedly increased the Mn2+ accumulation within glia but not within neurons while ouabaïn caused inhibition of Mn2+ uptake with neurons and glial cells. A modulation of the total protein synthesis by Mn2+ and ethanol level in the growth medium was observed with glial cells. These data suggest that the mechanisms involved in Mn2+ accumulation in glial cells are different from those present in neurons. Moreover, the results are consistent with the hypothesis that Mn2+ plays a regulatory role in glial cell metabolism.  相似文献   

8.
It has been shown previously in this laboratory that in vitro infection of mouse bone marrow cells with the anemia strain of Friend leukemia virus leads to growth of large bursts of erythroid cells which are arrested in development prior to hemoglobin synthesis but can respond to erythropoietin (EP) to complete the late stage of erythroblast differentiation. In this study, the effect of EP on the metabolism of 45Ca2+ in these cells was examined. At 4 degrees C, an increased rate of 45Ca2+ uptake and efflux as well as an increase in the steady state level of 45Ca2+ in treated cells was observed. Exchange of 45Ca2+ from preloaded cells at 4 degrees C indicated that treatment with EP increased the size of a rapidly exchanging pool of 45Ca2+ from 5 to 12% of total 45Ca2+ in the cell. The effect of treatment with EP can be seen as increased exchange of extracellular 45Ca2+ with cellular Ca2+; however, an effect of EP on the net level of Ca2+ in these cells cannot be excluded. This investigation demonstrates one of the earliest effects of EP on erythroid cells and suggests that alterations in Ca2+ metabolism may contribute to the progression of erythroid cells to their final development.  相似文献   

9.
Purified canine cardiac sarcoplasmic reticulum vesicles were passively loaded with 45CaCl2 and assayed for Ca2+ releasing activity according to a rapid quench protocol. Ca2+ release from a subpopulation of vesicles was found to be activated by micromolar Ca2+ and millimolar adenine nucleotides, and inhibited by millimolar Mg2+ and micromolar ruthenium red. 45Ca2+ release in the presence of 10 microM free Ca2+ gave a half-time for efflux of 20 ms. Addition of 5 mM ATP to 10 microM free Ca2+ increased efflux twofold (t1/2 = 10 ms). A high-conductance calcium-conducting channel was incorporated into planar lipid bilayers from the purified cardiac sarcoplasmic reticulum fractions. The channel displayed a unitary conductance of 75 +/- 3 pS in 53 mM trans Ca2+ and was selective for Ca2+ vs. Tris+ by a ratio of 8.74. The channel was dependent on cis Ca2+ for activity and was also stimulated by millimolar ATP. Micromolar ruthenium red and millimolar Mg2+ were inhibitory, and reduced open probability in single-channel recordings. These studies suggest that cardiac sarcoplasmic reticulum contains a high-conductance Ca2+ channel that releases Ca2+ with rates significant to excitation-contraction coupling.  相似文献   

10.
In the present study, we used laser scanning confocal microscopy in combination with fluorescent indicator dyes to investigate the effects of nitric oxide (NO) produced endogenously by stimulation of the mitochondria-specific NO synthase (mtNOS) or applied exogenously through a NO donor, on mitochondrial Ca2+ uptake, membrane potential, and gating of mitochondrial permeability transition pore (PTP) in permeabilized cultured calf pulmonary artery endothelial (CPAE) cells. Higher concentrations (100–500 µM) of the NO donor spermine NONOate (Sper/NO) significantly reduced mitochondrial Ca2+ uptake and Ca2+ extrusion rates, whereas low concentrations of Sper/NO (<100 µM) had no effect on mitochondrial Ca2+ levels ([Ca2+]mt). Stimulation of mitochondrial NO production by incubating cells with 1 mM L-arginine also decreased mitochondrial Ca2+ uptake, whereas inhibition of mtNOS with 10 µM L-N5-(1-iminoethyl)ornithine resulted in a significant increase of [Ca2+]mt. Sper/NO application caused a dose-dependent sustained mitochondrial depolarization as revealed with the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Blocking mtNOS hyperpolarized basal mitochondrial membrane potential and partially prevented Ca2+-induced decrease in TMRE fluorescence. Higher concentrations of Sper/NO (100–500 µM) induced PTP opening, whereas lower concentrations (<100 µM) had no effect. The data demonstrate that in calf pulmonary artery endothelial cells, stimulation of mitochondrial Ca2+ uptake can activate NO production in mitochondria that in turn can modulate mitochondrial Ca2+ uptake and efflux, demonstrating a negative feedback regulation. This mechanism may be particularly important to protect against mitochondrial Ca2+ overload under pathological conditions where cellular [NO] can reach very high levels. nitric oxide synthase; permeability transition pore; endothelium  相似文献   

11.
Ca2+ dependence of stimulated 45Ca efflux in skinned muscle fibers   总被引:3,自引:4,他引:3       下载免费PDF全文
Stimulation of sarcoplasmic reticulum Ca release by Mg reduction of caffeine was studied in situ, to characterize further the Ca2+ dependence observed previously with stimulation by Cl ion. 45Ca efflux and isometric force were measured simultaneously at 19 degrees C in frog skeletal muscle fibers skinned by microdissection; EGTA was added to chelate myofilament space Ca either before or after the stimulus. Both Mg2+ reduction (20 or 110 microM to 4 microM) and caffeine (5 mM) induced large force responses and 45Ca release, which were inhibited by pretreatment with 5 mM EGTA. In the case of Mg reduction, residual efflux stimulation was undetectable, and 45Ca efflux in EGTA at 4 microM Mg2+ was not significantly increased. Residual caffeine stimulation at 20 microM Mg2+ was substantial and was reduced further in increased EGTA (10 mM); at 600 microM Mg2+, residual stimulation in 5 mM EGTA was undetectable. Caffeine appears to initiate a small Ca2+-insensitive efflux that produces a large Ca2+-dependent efflux. Additional experiments suggested that caffeine also inhibited influx. The results suggest that stimulated efflux is mediated mainly or entirely by a channel controlled by an intrinsic Ca2+ receptor, which responds to local [Ca2+] in or near the channel. Receptor affinity for Ca2+ probably is influenced by Mg2+, but inhibition is weak unless local [Ca2+] is very low.  相似文献   

12.
We have used GH3 cells permeabilized by electric field discharge to examine the effects of Ca2+ and protein kinase C activators (phorbol ester and diacylglycerol) on prolactin (PRL) release. Ca2+ was found to stimulate PRL release approximately 4 fold at 3 microM Ca2+ with a half-maximal response at approximately .5 microM estimated free Ca2+. 12-O-tetradecanoyl phorbol-13-acetate and 1-oleoyl-2-acetyl-sn-glycerol stimulated PRL release throughout a range of Ca2+ concentrations (1 nM -3 microM), but stimulation was greater at higher Ca2+ concentrations (.1 microM to 1 microM). Both agents decreased by 1.8 fold the apparent [Ca2+] at which half-maximal stimulation of secretion occurred. Quin 2 was used to measure the free [Ca2+] of intact and permeable cells; PRL secretion at a free [Ca2+] corresponding to resting cytoplasmic [Ca2+] was 10% of maximal, while secretion at the [Ca2+] corresponding to the Ca2+ spike induced by thyrotropin-releasing hormone was approximately 25% of maximal.  相似文献   

13.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

14.
Influence of red light and acetylcholine on 45Ca2+ uptake by oat coleoptile cells was examined. It was found that the uptake is passive in darkness, while short, 10–15 min. exposure of coleoptile sections to red light or treatment with acetylcholine solution increases the rate of 45Ca2+ uptake from the medium. Calcium channel blockers, La3+ and Verapamil, hinder 45Ca2+ uptake in darkness and neutralize the stimulative influence of red light and acetylcholine.  相似文献   

15.
The effects of calcium antagonists, diltiazem and verapamil, and calmodulin antagonists, chlorpromazine, N-(6-aminohexyl)-1-naphthalenesulfonamide hydrochloride (W-5) and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), were tested on two responses of the sea urchin egg to insemination: (1) H+ release; (2) Ca2+ uptake. It was found that calcium antagonists inhibited both processes, while calmodulin antagonists only inhibited H+ release but not Ca2+ uptake. Verapamil and diltiazem were effective to inhibit H+ release when added to the egg suspension up to 120 sec and W-7 was effective around 150 sec after insemination. Calcium antagonists became ineffective earlier than W-7 in inhibiting H+ release. A calmodulin-dependent step may thus occur linking the Ca2+ uptake and H+ release. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), an anion channel blocker, also inhibited both Ca2+ uptake and H+ release. This result suggests that an uptake of anion(s) occurs along with Ca2+ uptake.  相似文献   

16.
The objective of this study was to evaluate the role of mitochondrial Ca2+ uptake (MCU) in modulation (shaping) of the glutamate (Glu)-induced changes in neuronal cytoplasmic Ca2+ ([Ca2+]i). In order to block MCU, nerve cells were treated with mitochondrial inhibitors (MI) inducing collapse of the mitochondrial potential (Delta Psim). Measurements of changes in [Ca2+]i were performed using either the low-affinity (fura-2FF) or high-affinity (fura-2) Ca2+ indicators. Loading of nerve cells with rhodamine 123 made it possible to monitor changes in Delta Psim. In the first series of experiments it was shown that blockade of MCU in fura-2FF-loaded cells with a cocktail of rotenone (2 microM)+oligomycin (2.5 microg/ml) greatly (2.53+/-0.4 times, n=61) increased the [Ca2+]i response to a 1-min Glu (100 microM) pulse. In fura-2-loaded cells, this increase was small (less than 1.3 times) or absent. In the second series of experiments, cocktails of rotenone+oligomycin or FCCP (1 microM)+oligomycin were applied during a prolonged Glu application. This produced strong mitochondrial depolarisation and an additional [Ca2+]i increase. In most cells the latter could be reversed or prevented by a removal of external Ca2+. The MI-induced additional [Ca2+]i increase was especially pronounced in cells loaded with fura-2FF. In some neurones a removal of external Ca2+ did not produce a decrease in [Ca2+]i during combined Glu+MI application, suggesting an impairment of [Ca2+]i extrusion mechanisms of these cells. The conclusion is drawn that MCU makes a considerable contribution to regulation of [Ca2+]i responses caused by Ca2+ influx via Glu-activated ionic channels. The reasons for a quantitative difference between [Ca2+]i responses observed in fura-2- and fura-2FF-loaded neurones are discussed.  相似文献   

17.
We cultured retinal pigment epithelial (RPE) cells dissociated from adult newt eye and analyzed their voltage-gated ion channels during culture using whole-cell patch-clamp techniques. The results were compared with those of retinal neurons under identical experimental conditions. After 6–9 days in culture (early stage), > 60% of RPE cells developed voltage-gated Na+ and Ca2+ channels that were not observed in freshly dissociated RPE cells. The number of cells expressing Na+ channels and Na+ current density were high after 12–15 days in culture (intermediate stage), while the number of Ca2+ channel-expressing cells and Ca2+ current density were high after 20–30 days in culture (late stage). The activation voltage of the Na+ current in the RPE cells was similar to that in neurons. The voltage dependence of Na+ current inactivation was somewhat different between two cell types. The steepness of the inactivation curve tended to be less in cultured RPE cells than in neurons, and the half-inactivation voltage was about −54 mV for the RPE cells and −45 mV for neurons. The Ca2+ current expressed in cultured RPE cells was too small to detect without replacement of external Ca2+ with Ba2+. The Ba2+ current, like Ca2+ current in neurons, was enhanced by Bay-K 8644 and blocked by nicardipine. These results suggest that the RPE cells, like neurons, expressed L-type Ca2+ channels in culture. The possibility that the development of both Na2+ and Ca2+ channels in cultured RPE cells is a manifestation of the transdifferentiation of RPE cells into neurons is discussed. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 377–390, 1997.  相似文献   

18.
19.
20.
We previously described a 27-amino acid peptide neurotoxin from the venom of Conus geographus, omega-conotoxin GVIA, which inhibits neuronal voltage-activated calcium channels. In this paper we describe the total synthesis of omega-conotoxin GVIA and demonstrate that it efficiently blocks voltage-activated uptake of 45Ca by standard synaptosomal preparations from chick brain. Dihydropyridines do not block 45Ca uptake under these conditions. Thus, the omega-conotoxin-sensitive, but dihydropyridine-insensitive uptake of 45Ca2+ by chick brain synaptosomes serves as a functional assay for a Ca channel target of omega-conotoxin. The use of synthetic GVIA should rapidly accelerate our understanding of the molecular biology of Ca2+ channels and their role in neuronal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号