首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The Ag-staining of metaphase chromosomes in one-cell mouse embryos shows that the nucleolus organizer regions (NORs) are Ag-negative, whereas centromeric regions (CRs) are Ag-positive. Starting from 8-16-cell embryos, NORs stained by AgNO3 constantly, CRs remaining argentophobic. On the ultrathin sections of multicell embryos, Ag(+)-NORs differ from the chromosomal arms: they consist of loosely filaments about 6-8 nm in diameter, characterized by a low electron density. On the contrary, at one-cell stage Ag(-)-NORs are not morphologically identified: chromosomal bodies consist of uniform DNP-fibrils about 20 nm in diameter. These data permit to suppose that extended rDNA may form supranucleosomal and nucleosomal DNP-fibrils in the absence of Ag-proteins. The Ag(+)- and Ag(-)-CRs contain 10-20 nm DNP-fibrils mainly, although their density at multicell stages is higher than in one-cell mouse embryos.  相似文献   

4.
5.
6.
Arabidopsis thaliana 45S ribosomal genes (rDNA) are located in tandem arrays called nucleolus organizing regions on the termini of chromosomes 2 and 4 (NOR2 and NOR4) and encode rRNA, a crucial structural element of the ribosome. The current model of rDNA organization suggests that inactive rRNA genes accumulate in the condensed chromocenters in the nucleus and at the nucleolar periphery, while the nucleolus delineates active genes. We challenge the perspective that all intranucleolar rDNA is active by showing that a subset of nucleolar rDNA assembles into condensed foci marked by H3.1 and H3.3 histones that also contain the repressive H3K9me2 histone mark. By using plant lines containing a low number of rDNA copies, we further found that the condensed foci relate to the folding of rDNA, which appears to be a common mechanism of rDNA regulation inside the nucleolus. The H3K9me2 histone mark found in condensed foci represents a typical modification of bulk inactive rDNA, as we show by genome-wide approaches, similar to the H2A.W histone variant. The euchromatin histone marks H3K27me3 and H3K4me3, in contrast, do not colocalize with nucleolar foci and their overall levels in the nucleolus are very low. We further demonstrate that the rDNA promoter is an important regulatory region of the rDNA, where the distribution of histone variants and histone modifications are modulated in response to rDNA activity.  相似文献   

7.
Ovulated mouse oocytes and preimplantation embryos were examined for NOR activity by means of selective silver staining. Evidence of the first staining activity appeared in two cell embryos, which was later followed by an increase in nucleolar activity, whereas the ovulated oocytes and pronuclei showed no such activity whatsoever. The staining of chromosomes was restricted to the nucleolus organizing region. Our results agree with earlier observations that genes for ribosomal RNA (rRNA) are transcribed as early as in the 2-cell stage in mouse embryogenesis. In addition to the nuclear staining we also observed some silver staining within the cytoplasm, at least from 4-cell stages onwards. Cytoplasmic staining was resistant to incubation with cycloheximide and actinomycin D. Nuclear staining was depressed, or even totally blocked, after actinomycin D incubation but was not blocked by cycloheximide. The onset of silver staining depends not on a specific embryonic stage but on the time interval following ovulation. This appears to indicate that the initiation of ribosomal cistrons is regulated by molecules which are activated or synthesized within the oocyte soon after ovulation.  相似文献   

8.
9.
Pericentric constitutive heterochromatin surrounds centromeric regions and is important for centromere function and chromatid cohesion. HP1 (heterochromatin protein 1), a homolog of yeast Swi6, has been shown to be indispensible for proper heterochromatin structure and function. In mammalian somatic cells, two HP1 isoforms, HP1α and HP1β, are constitutively present in pericentric heterochromatin until late G2, when they dissociate from heterochromatin. Subsequently, they re-associate with heterochromatin at late anaphase. In one-cell mouse embryos, pericentric heterochromatin has a unique configuration and features. It does not form heterochromatin clusters observed in somatic cells and known as chromocenters. Instead, in both pronuclei, it surrounds nucleolar precursor bodies (NBPs), forming ring-like structures. These regions contain HP1β but lack HP1α in both pronuclei. In subsequent interphases, HP1β is constitutively found in heterochromatin until the blastocyst stage. It is not known when HP1α appears and what is its function in early mouse embryos. Here, we show that HP1α appears for the first time at late S phase of two-cell stage, at the time when pericentric heterochromatin is replicated. Its appearance is regulated at the level of translation. In two-cell embryos, the amount of HP1α that can bind to these regions is regulated by phosphorylation of serine 10 of histone H3 (H3S10Ph). Elimination of HP1α by siRNA interfered with centromere relocation from heterochromatin surrounding NPBs to pro-chromocenters at the two-cell stage but did not affect preimplantation develoment to the blastocyst stage.  相似文献   

10.
11.
12.
We have used biotinylated rDNA probes to localize by in situ hybridization the extrachromosomal genes for ribosomal RNA in the slime mold Physarum polycephalum. We established conditions that allow for highly specific hybridization at the ultrastructural level and determined that the 60-kb palindromic rDNA molecules are confined to the nucleolus in interphase. Our study definitively locates these extrachromosomal genes in mitosis in the form of thin DNA fibers contained within nucleolar remnants. We further show that these rDNA minichromosomes do not condense and that they segregate as entities independent of the condensed chromosomal DNA. In telophase, these minichromosomes migrate from the poles toward the equatorial region of the nucleus in a direction opposite that of the chromosomes. Our results illustrate the discontinuous nature of the nucleolar organizing region in Physarum.  相似文献   

13.
14.
15.
16.
Mitotic segregation of nucleolus in fission and budding yeast proceeds without disassembling its complex structure, creating challenging problems for transmission of nucleolus-organizing regions during nuclear division. The SMC complex called condensin, which plays a leading role in organizing mitotic structure of chromosomes in all eukaryotes, is essential for nucleolar segregation in budding yeast, where rDNA chromatin is the main target of mitotic condensin activity. Mitosis-specific condensin targeting to the nucleolus presents an attractive model to study mechanisms controlling condensin binding to specific chromatin domains. Recent reports suggest that the early-anaphase release of Cdc14 from the nucleolus (FEAR pathway) controls the proficiency of nucleolar segregation by promoting the mitotic condensin function in rDNA. This finding uncovers an essential function for the FEAR pathway and postulates the unique nucleolar self-regulatory mechanism, which evolved to recruit two essential enzymatic activities, Cdc14 phosphatase and condensin ATP-dependent supercoiling, for the specific task of segregating nucleoli without their disassembly.  相似文献   

17.
Fine structure of nucleoli in micronucleated cells   总被引:6,自引:0,他引:6  
The correlation between the number of nucleolus organizing regions (NOR) on metaphase chromosomes and the number of nucleoli was studied in normal and micronucleate cells. Many micronuclei, but not all, were able to form complete nucleoli with fibrillar and granular RNP components and fibrillar centers. Micronuclei which failed to form complete nucleoli often contained multiple electron-dense bodies of fibrillar material. These structures, which were much smaller than nucleoli, reacted with nucleolus-specific antibodies and the Ag-As method in the same way as complete nucleoli, but lacked fibrillar centers and granular RNP components. The data suggest that these nucleolus-like ‘blobs’ contain nucleolar material which, following mitosis, has been enclosed in micronuclei which do not contain nucleolus organizing chromosomes. No evidence was found for the activation of latent NORs not expressed in mononucleate cells.  相似文献   

18.
19.
20.
During early embryogenesis of the nematode Parascaris univalens (2n=2) the processes of chromatin diminution and segregation of the germ and somatic cell lineages take place simultaneously. In this study we analyzed the nucleolar cycle in early embryos, both in germinal and somatic blastomeres, by means of silver staining and antibodies against the nucleolar protein fibrillarin. We observed an identical nucleolar cycle in both types of blastomeres, hence, the chromatin diminution process has no effect on the nucleolar cycle of somatic blastomeres. We report the existence of outstanding differences between this cycle and those previously reported during early embryogenesis of other species. There is a true nucleolar cycle in early embryos that shows a peculiar nucleolar disorganization at prophase, and a preferential localization of prenucleolar bodies only on the euchromatic regions during nucleologenesis. Moreover, fibrillarin does not form a perichromosomal sheath in metaphase or anaphase holocentric chromosomes, probably owing to their special centromeric organization. The number and location of nucleolus organizer regions (NORs) in the chromosomal complement have been determined using silver impregnation, chromomycin A3/distamycin A staining, and fluorescent in situ hybridization using an rDNA probe. There are only two NORs, one per chromosome, and these are lost in blastomeres after chromatin diminution. Moreover, the constant presence of two nucleoli in somatic blastomeres suggests that NORs are not affected during the fragmentation of euchromatic regions when this process occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号