首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of nucleolar reformation on RNA synthesis that resumes in late anaphase or early telophase has been investigated in synchronously dividing Amoeba proteus. RNA synthesis was completely inhibited throughout all stages of mitosis and the early hours of interphase with high concentrations of actinomycin D. In such cells, nucleolus-like bodies that bind azure B and pyronin were apparent in the reformed nuclei. The bodies appear as dense, fibrous masses with loosely associated, finely fibrillar material. There are no characteristic granular regions in the reformed structures. It is suggested that the bodies probably represent mainly nucleolar protein and residual RNA which can bring about the reorganization of nucleoli in the absence of postmitotic RNA synthesis.  相似文献   

2.
The reconstruction of the nucleolus after mitosis was analyzed by electron microscopy in cultured mammalian (L929) cells in which nucleolar RNA synthesis was inhibited for a 3 h period either after or before mitosis. When synchronized mitotic cells were plated into a concentration of actinomycin D sufficient to block nucleolar RNA synthesis preferentially, nucleoli were formed at telophase as usual. 3 h after mitosis, these nucleoli had fibrillar and particulate components and possessed the segregated appearance characteristic of nucleoli of actinomycin D-treated cells. Cells in which actinomycin D was present for the last 3 h preceding mitosis did not form nucleoli by 3 h after mitosis though small fibrillar prenucleolar bodies were detectable at this time. These bodies subsequently grew in size and eventually acquired a particulate component. It took about a full cell cycle before nucleoli of these cells were completely normal in appearance. Thus, nucleolar RNA synthesis after mitosis is not necessary for organization of nucleoli after mitosis. However, inhibition of nucleolar RNA synthesis before mitosis renders the cell incapable of forming nucleoli immediately after mitosis. If cells are permitted to resume RNA synthesis after mitosis, they eventually regain nucleoli of normal morphology.  相似文献   

3.
Summary Nucleolar RNA synthesis is inhibited and cell division delayed in synchronous cultures of mouse fibroblasts (strain L-929) treated with actinomycin D (0.04 μg per ml). The gradual loss of actinomycin D from the cells during a 2-hr period following incubation is accompanied by an increase in the rate of nucleolar RNA synthesis to the control level. Following this the rate of protein synthesis is decreased by 25% for approximately 9 hr. The length of time that nucleolar RNA and protein synthesis are inhibited accounts for the delay in mitosis 1 1/2 cell cycles later. These data support the contention that certain proteins produced during one interphase are prerequisite for division in a subsequent cycle.  相似文献   

4.
Summary Nucleolar RNA synthesis is inhibited and cell division delayed in synchronous cultures of mouse fibroblasts (strain L-929) treated with actinomycin D(0.04 μ per ml). The gradual loss of actinomycin D from the cells during a 2-hr period following incubation is accompanied by an increased in the rate of nucleolar RNA synthesis to the control level. Following this the rate of protein synthesis is decreased by 25% for approximately 9 hr. The length of time that nucleolar RNA and protein synthesis are inhibited accounts for the delay in mitosis 1 1/2 cell cycles later. These data support the contention that certain proteins produced during one interphase are prerequisite for division in a subsequent cycle.  相似文献   

5.
6.
Cytological staining with silver nitrate is specific for a protein associated with chromosomal nucleolus organizer regions and interphase nucleoli. At metaphase the amount of staining present is usually much less than that at interphase. During the transition from mitosis to G1, as seen in synchronized HeLa cells, the amount of silver staining increases and, by late G1, is located discretely and completely over the nucleolus. Such staining remains constant through G2. Towards late G2 a slight disorganization of the silver staining material is observed, possibly in preparation for the upcoming mitosis. Cells synchronized at mitosis and treated with either actinomycin D (AMD) or 2-mercapto-1-[2-(4-pyridyl)-ethyl]-benzimidazole (MPB), at concentrations which inhibit ribosomal RNA (rRNA) synthesis, show nucleolar fragmentation and little, if any, apparent increase in silver staining at early G1. After removal of the MPB, the nucleolar fragments reform nucleoli and the staining increases to control levels. Treatment of mitotic cells with puromycin dihydrochloride does not effect nucleolar morphology or the increase in silver staining. These results directly demonstrate that silver staining is associated with rRNA synthesis.  相似文献   

7.
Previously it has been found that in tobacco callus cells nucleolar vacuoles repeatedly form and contract. In this study, nucleolar vacuoles were investigated by using radioautography, actinomycin D, and electron microscopy. It was found, from grain counts of nucleoli labeled with uridine-3H, that nucleoli containing vacuoles had more than three times as many grains/µ2 of nucleolar substance as did nucleolei without vacuoles. Treatment of tobacco callus cells with various concentrations of actinomycin D caused the percentage of cells containing nucleolar vacuoles to decrease; with the highest concentration the percentage of these cells dropped from the normal level of about 70% to less than 10%. However, after removal of actinomycin D the cells regained nucleolar vacuoles up to the control level. When radioautography was used with actinomycin D, it was found that the actinomycin D inhibited the uptake of uridine-3H, i.e. inhibited RNA synthesis, in those nucleoli which lost their nucleolar vacuoles. In addition, after removal of the cells from actinomycin D, it was found that as the cells regained nucleolar vacuoles the nucleoli also began to incorporate uridine-3H. Electron micrographs showed the nucleoli to be composed of a compact, finely fibrous central portion surrounded by a layer of dense particles 100–150 A in diameter. Nucleolar vacuoles occurred in the fibrous central portion. Dense particles similar to those in the outer layer of the nucleoli were found scattered throughout the vacuoles and in a dense layer at their outer edge. These data suggest that in cultured tobacco callus cells the formation and contraction of nucleolar vacuoles is closely related to RNA synthesis in the nucleolus.  相似文献   

8.
THE NUCLEOLI IN MITOTIC DIVISIONS OF MAMMALIAN CELLS IN VITRO   总被引:11,自引:8,他引:3  
In a number of mammalian cell strains nucleoli persisted through mitosis. This phenomenon was especially pronounced in several cell lines derived from Chinese hamster tissues. All the methods employed, including radioautography with tritiated uridine, cytochemical stains (methyl green-pyronin and azure B), fluorescent microscopy (coriphosphine O), ribonuclease digestion, and electron microscopy, demonstrated that the bodies identified as persistent nucleoli in the mitotic stages had the same characteristics as did the nucleoli in the interphase. Persistent nucleoli may attach to the chromosomes or may be free in the cytoplasm. In cells where no persistent nucleoli as such were noted, nucleolar material was observed to attach to the chromosomes in shapeless masses which moved with the chromosomes during anaphase. At least a portion of the nucleolar material was included in the daughter nuclei, presumably for immediate use for protein synthesis after cell division.  相似文献   

9.
Nucleolar partition induced by actinomycin D was used to demonstrate some aspects of nucleolar RNA synthesis and release in mouse hepatic cells, with light and electron microscopic radioautography. The effect of the drug on RNA synthesis and nucleolar morphology was studied when actinomycin D treatment preceded labeling with tritiated orotic acid. Nucleolar partition, consisting of a segegration into granular and fibrillar parts was visible if a dosage of 25 µg of actinomycin D was used, but nucleolar RNA was still synthesized. After a dosage of 400 µg of actinomycin D, nucleolar RNA synthesis was completely stopped If labeling with tritiated orotic acid preceded treatment with 400 µg of actinomycin D, labeled nucleolar RNA was present 15 min after actinomycin D treatment while high resolution radioautography showed an association of silver grains with the granular component. At 30 min after actinomicyn D treatment all labeling was lost. Since labeling was associated with the granular component the progressive loss of label as a result of actinomycin D treatment indicated a release of nucleolar granules. The correlation between this release and the loss of 28S RNA from actinomycin D treated nucleoli as described in the literature is discussed.  相似文献   

10.
Two of the 36 chromosomes in Xenopus laevis are known to carry nucleolar organizer loci. Partitioning of the chromosomes of cultured, early-passage Xenopus cells among variable numbers of micronuclei could be induced by extended colcemid treatment. A large, obvious nucleolus occurred in a maximum of 4 micronuclei per colcemid-induced tetraploid cell. The large, deeply-stained nucleoli incorporated [3H]uridine and appeared by electron microscopy to have typical nucleolar morphology with fibrillar and granular areas disposed in nucleolonema. In situ hybridization to radioactive ribosomal RNA (rRNA) resulted in heavy labelling of nucleoli in no more than 4 micronuclei per cell. The other micronuclei generally contained small bodies (blobs) which stained for RNA and protein as well as with ammoniacal silver. In the electron microscope, these appeared as round, dense bodies resembling nucleoli segregated by actinomycin D treatment. Nucleoplasmic RNA synthesis occurred in all micronuclei regardless of whether they contained definitive nucleoli. These observations suggest that micronuclei which formed large, typical, RNA-synthesizing nucleoli contained nucleolar organizer chromosomes, while the other micronuclei, which contained nucleolus-like “blobs” probably lacked nucleolar organizer loci. It is possible that the nucleolus-like bodies may have been aggregates of previously synthesized nucleolar RNA and protein trapped in micronuclei after mitosis.  相似文献   

11.
The structure of nuclei and nucleoli of hepatic cells after short-term ethionine administration was investigated with the electron microscope. By 1½ hr after the injection, a distinct alteration occurred in the nucleoli which was characterized by the appearance of electron-opaque masses in the nucleolonema. After 6–8 hr, the nucleoli showed partial fragmentation into small, dense masses. Large aggregates of interchromatinic granules appeared in the nucleoplasm. Condensation of chromatin became prominent in the nucleoplasm particularly along the nuclear membrane. By 12 hr almost complete fragmentation of nucleoli had occurred. The administration of adenine or methionine at 4 hr prevented the development of nucleolar changes. Also, adenine administration at 8 hr after ethionine completely reversed the nucleolar lesion by 12 hr. After methionine administration at 8 hr, many nucleoli showed incomplete reconstruction with many twisted ropelike structures when viewed 4 hr later. Identical structures were found when adenine was given at 8 hr, and animals were sacrificed 2 hr later. On the basis of this observation, the simplified structures of nucleoli found 2 hr after adenine or 4 hr after methionine appeared to be precursors of the nucleolonema. It is suggested that nucleoli show at least two basic reaction patterns to inhibitors of RNA synthesis, one typified by actinomycin D and one by ethionine.  相似文献   

12.
Erythrocyte membrane sulfhydryl groups and the active transport of cations   总被引:3,自引:0,他引:3  
RNA synthesis was studied by autoradiographic analysis using tritiated uridine incorporation in the Chinese hamster cell line Dede after a one-minute pulse labeling period. RNA synthesis continues during all stages of interphase and mitosis except during metaphase and anaphase. Cytoplasmic RNA was apparently synthesized in the nucleus, since no grains were observed above the background level in the sample immediately following the labeling. Nucleoli synthesize their own RNA and are not reservoirs for RNA synthesized elsewhere. Both actinomycin D and nogalamycin inhibited the RNA synthetic activity of chromatin and nucleoli. However, the nucleolar synthetic activity was more susceptible to these agents than that of chromatin. Furthermore, actinomycin D was a stronger inhibitor than nogalamycin.  相似文献   

13.
14.
15.
To elucidate the possible role of nucleolar phosphoprotein B23 in ribosome synthesis, drugs which inhibit the processing of ribosomal RNA were employed. After treatment with actinomycin D, toyocamycin or high doses of α-amanitin, a uniform nucleoplasmic fluorescence was observed. Low doses of α-amanitin and the protein synthesis inhibitor puromycin and cycloheximide had no effect on protein B23 translocation. By ELISA immunoassay, there was a 60% decrease in the amount of protein B23 in the nucleoli of the actinomycin D-treated cells as compared with the control nucleoli. Conversely, the amount of protein B23 in the nucleoplasm (excluding nucleoli) was 3-fold higher in the actinomycin D-treated cells. Preribosomal ribunucleoprotein particles (pre-rRNPs) were extracted from isolated nucleoli of Novikoff hepatoma ascites cells and fractionated on sucrose density gradients. Protein B23 was found co-localized with the pre-rRNPs as determined by ELISA assays which agrees with previous studies. The proteins in these 80 S and 55 S pre-ribosomal ribonucleoprotein particles were fractionated by 10% gel electrophoresis. Immunoblots showed protein B23 was present in both pre-rRNPs.  相似文献   

16.
17.
A rabbit serum which had previously been reported to have an immunological affinity for centrosomes of human cell lines was shown also to be specific for the nucleus. Optical and ultrastructural immunolocalization in HeLa cells showed that this specificity is restricted to the fibrillar centre of nucleoli either in untreated or actinomycin D treated interphase cells. In mitotic cells discrete labelling was observed on chromosomes and shown to correspond, on spread metaphase plates, to the short arms of acrocentric chromosomes, i.e. to the nucleolar organizer regions (NORs). Using independent cell fractionation procedures in the human T-lymphoblastic KE 37 cell line and purification of immunoglobulins by affinity to antigens detected by electrophoresis and blotting, a strict correlation between immunoreactive proteins and cytological staining was established. The nucleolar specificity was shown to correspond to a protein with an Mr of 80,000 while the centrosomal specificity corresponded principally to a protein doublet of 60,000–65,000. These antigens share common epitopes as shown by the staining of both NOR and centrosome by immunoglobulins purified by affinity to either type of protein.  相似文献   

18.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

19.
The pattern of staining for DNA, histone, and nonhistone protein has been studied in whole cells and in nuclei and chromosomes isolated by surface spreading. In whole interphase cells from bovine kidney tissue culture, nuclear staining for DNA and histones reveals numerous small, intensely stained clumps, surrounded by more diffusely stained material. Nuclei in whole cells stained for nonhistone proteins also contain intensely stained regions surrounded by diffuse stain. These intensely stained regions also stain for RNA, indicating that the regions contain nucleolar material. Electron microscopy of kidney cells confirms that multiple nucleoli are present. Kidney nuclei isolated by surface spreading show an even distribution of stain for DNA, histones, and nonhistone proteins, indicating that the surface forces disperse both condensed chromatin and nucleoli. DNA and protein staining was also studied in metaphase chromosomes from testes of the milkweed bug, Oncopeltus fasciatus. Staining for DNA and histones in metaphase chromosomes is essentially the same in sections of fixed and embedded testes as in preparations isolated by surface spreading. However, striking differences are noted in the distribution of nonhistone proteins. In sections, nonhistone stain is concentrated in extrachromosomal areas; metaphase chromosomes do not stain for nonhistone proteins. Chromosomes isolated by surface spreading, however, stain intensely for nonhistone proteins. This suggests that nonhistone proteins are bound to the chromosomes as a contaminant during the isolation procedure. The relationship of these findings to current work with chromosomes isolated for electron microscopy is discussed.  相似文献   

20.
KB cells derived from human carcinoma were fixed in acetic-alcohol (1:3) and extracted with 10% perchloric acid (PCA) at 4 C for 1, 3, 6, 9, 12, 24 and 30 hr. Cells were then washed in water and stained for nucleic acids, proteins, polysaccharides, and lipids. Control cells were kept in water for 30 hr prior to staining. Acridine orange (AO) fluorochroming revealed color changes in residual cytoplasmic and nucleolar RNA as well as DNA during extraction--interpreted as indicative of molecular alterations. All nucleic acid stains (AO, gallocyanin chromalum, and azure B bromide) demonstrated a differential extraction of RNA, with cytoplasmic RNA being removed in about 6 hr and nucleolar RNA requiring 6 more hours for complete extraction. Large granules appeared early in nuclei. These were positive for DNA by azure B, gallocyanin chromalum, Feulgen, and fluorescent-Feulgen. These same granules stained for protein by mercuric bromphenol blue and alkaline Biebrich scarlet. At 24 hr, there was visual and Feulgen-cytophotometric evidence for a slight loss of DNA, which may amount to 10-20%. There was a progressive loss of cytoplasmic and nuclear but not nucleolar protein during PCA treatment. Concurrently, large protein-positive granules appeared in the cytoplasm. Apparently, PCA treatment in combination with an aqueous wash was responsible for some protein loss. Glycogen was gradually lost (fluorescent PAS) and redistributed in cells. Lipids were unaffected (Sudan black B).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号