首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperthermophiles Pyrococcus furiosus and Pyrococcus abyssi make pyrimidines and arginine from carbamoyl phosphate (CP) synthesized by an enzyme that differs from other carbamoyl-phosphate synthetases and that resembles carbamate kinase (CK) in polypeptide mass, amino acid sequence, and oligomeric organization. This enzyme was reported to use ammonia, bicarbonate, and two ATP molecules as carbamoyl-phosphate synthetases to make CP and to exhibit bicarbonatedependent ATPase activity. We have reexamined these findings using the enzyme of P. furiosus expressed in Escherichia coli from the corresponding gene cloned in a plasmid. We show that the enzyme uses chemically made carbamate rather than ammonia and bicarbonate and catalyzes a reaction with the stoichiometry and equilibrium that are typical for CK. Furthermore, the enzyme catalyzes actively full reversion of the CK reaction and exhibits little bicarbonate-dependent ATPase. In addition, it cross-reacts with antibodies raised against CK from Enterococcus faecium, and its three-dimensional structure, judged by x-ray crystallography of enzyme crystals, is very similar to that of CK. Thus, the enzyme is, in all respects other than its function in vivo, a CK. Because in other organisms the function of CK is to make ATP from ADP and CP derived from arginine catabolism, this is the first example of using CK for making rather than using CP. The reasons for this use and the adaptation of the enzyme to this new function are discussed.  相似文献   

2.
The enzymes carbamoyl phosphate synthetase (CPS) and carbamate kinase (CK) make carbamoyl phosphate in the same way: by ATP-phosphorylation of carbamate. The carbamate used by CK is made chemically, whereas CPS itself synthesizes its own carbamate in a process involving the phosphorylation of bicarbonate. Bicarbonate and carbamate are analogs and the phosphorylations are carried out by homologous 40 kDa regions of the 120 kDa CPS polypeptide. CK can also phosphorylate bicarbonate and is a homodimer of a 33 kDa subunit that was believed to resemble the 40 kDa regions of CPS. Such belief is disproven now by the CK structure reported here. The structure does not conform to the biotin carboxylase fold found in the 40 kDa regions of CPS, and presents a new type of fold possibly shared by homologous acylphosphate-making enzymes. A molecular 16-stranded open beta-sheet surrounded by alpha-helices is the hallmark of the CK dimer. Each subunit also contains two smaller sheets and a large crevice found at the location expected for the active center. Intersubunit interactions are very large and involve a central hydrophobic patch and more hydrophilic peripheral contacts. The crevice holds a sulfate that may occupy the site of an ATP phosphate, and is lined by conserved residues. Site-directed mutations tested at two of these residues inactivate the enzyme. These findings support active site location in the crevice. The orientation of the crevices in the dimer precludes their physical cooperation in the catalytic process. Such cooperation is not needed in the CK reaction but is a requirement of the mechanism of CPSs.  相似文献   

3.
Enzymes from thermophilic organisms often exhibit low activity at reduced temperature. To obtain a better understanding of this sluggishness, we have studied the reaction at 24 degrees C of the carbamate kinase (CK) from the hyperthermophile Pyrococcus furiosus. This enzyme is much slower at low temperature than is the CK from the mesophile Enterococcus faecalis. X-ray structures demonstrated bound ADP (even when no nucleotide was added) with the hyperthermophilic but not with the mesophilic CK. We use centrifugal gel filtration, rate of dialysis and pulse-chase experiments to demonstrate that the pyrococcal enzyme, at 24 degrees C, binds ADP avidly (K(D) = 34 nM), that ADP dissociates from this complex with a t1/2 value of 2.4 s, and that ADP binding is very fast (kappa = 8.4 x 10(6) M(-1) x s(-1)). The high affinity, rather than restrictions to dissociation, explains the isolation of the pyrococcal enzyme as an ADP complex. Carbamoyl phosphate adds quickly to this complex, and ADP cannot dissociate from the resulting ternary complex, being that it is converted very slowly (t1/2 = 10.3 s) to ATP, which dissociates quickly (t1/2 < 2.4 s). The slow conversion is a part of the normal enzyme reaction and limits the rate of the reaction at 24 degrees C. Thus, the sluggishness of the enzyme at low temperature is not due to slow substrate binding or product release but to the very slow rate of isomerization between enzyme-bound substrates and products. Probably the catalysis of the phosphoryl group transfer is less efficient at low temperature, as suggested by structural data showing that Lys131 is improperly positioned to assist the transfer.  相似文献   

4.
Pyrococcus abyssi, a hyperthermophilic archaeon found in the vicinity of deep-sea hydrothermal vents, grows optimally at temperatures around 100 degrees C. Carbamoyl phosphate synthetase (CPSase) from this organism was cloned and sequenced. The active 34-kDa recombinant protein was overexpressed in Escherichia coli when the host cells were cotransformed with a plasmid encoding tRNA synthetases for low-frequency Escherichia coli codons. Sequence homology suggests that the tertiary structure of P. abyssi CPSase, resembling its counterpart in Pyrococcus furiosus, is closely related to the catabolic carbamate kinases and is very different from the larger mesophilic CPSases. P. furiosus CPSase and carbamate kinase form carbamoyl phosphate by phosphorylating carbamate produced spontaneously in solution from ammonia and bicarbonate. In contrast, P. abyssi CPSase has intrinsic bicarbonate-dependent ATPase activity, suggesting that the enzyme can catalyze the phosphorylation of the isosteric substrates carbamate and bicarbonate.  相似文献   

5.
Carbamoyl phosphate synthetase I (CPSI) deficiency, a recessively inherited error of the urea cycle, causes life-threatening hyperammonaemia. CPSI is a multidomain 1500-residue liver mitochondrial matrix protein that is allosterically activated by N-acetyl-l-glutamate, and which synthesises carbamoyl phosphate (CP) in three steps: bicarbonate phosphorylation by ATP, carbamate synthesis from carboxyphosphate and ammonia, and carbamate phosphorylation by ATP. Several missense mutations of CPSI have been reported in patients with CPSI deficiency, but the actual pathogenic potential and effects on the enzyme of these mutations remain non-characterised. Since the structure of Escherichia coli CPS is known and systems for its overexpression and purification are available, we have constructed and purified eight site-directed mutants of E.coli CPS affecting the enzyme large subunit (A126M, R169H, Q262P, N301K, P360L, V640R, R675L, S789P) that are homologous to corresponding missense mutations found in patients with CPSI deficiency, studying their stability and their ability to catalyse the CPS reaction as well as the partial reactions that reflect the different reactional steps, and analysing the substrate kinetics for the overall and partial reactions. The results show that all the mutations significantly decrease CP synthesis without completely inactivating the enzyme (as reflected in the catalysis of at least one partial reaction), that one of these mutations (Q262P) causes marked enzyme instability, and validate the use of E.coli CPS as a pathogenicity testing model for CPSI deficiency. The causality of the reported clinical mutations is supported and the derangements caused by the mutations are identified, revealing the specific roles of the residues that are mutated. In particular, the findings highlight the importance for carbamate phosphorylation and for allosteric activation of a loop that coordinates K(+), stress the key role of intersubunit interactions for CPS stability, and suggest that lid opening at both phosphorylation sites is concerted.  相似文献   

6.
The temperature adaptation of pyrrolidone carboxyl peptidase (PCP) from a hyperthermophile, Pyrococcus furiosus (Pf PCP), was characterized in the context of an assembly form of the protein which is a homotetramer at neutral pH. The Pf PCP exhibited maximal catalytic activity at 90-95 degrees C and its activity was higher in the temperature range 30-100 degrees C than its counterpart from the mesophilic Bacillus amyloliquefaciens (BaPCP). Thermal stability was monitored by differential scanning calorimetry (DSC). Two clearly separated peaks appeared on the DSC curves for Pf PCP at alkaline and acidic pH. Using the oxidized Pf PCP and two mutant proteins (Pf C188S and Pf C142/188S), it was found that the peaks on the high and low temperature sides of the DSC curve of Pf PCP were produced by the forms with an intersubunit disulfide bridge between the two subunits and without the bridge, respectively, indicating the stabilization effect of intersubunit disulfide bridges. The denaturation temperature (Td) of Pf PCP with intersubunit disulfide bridges was higher by 53 degrees C at pH 9.0 than that of BaPCP. An analysis of the equilibrium ultracentrifugation patterns showed that the tetrameric Pf C142/188S dissociated into dimers with decreasing pH in the acidic region and became monomer subunits at pH 2.5. The heat denaturation of Pf PCP and its two Cys mutants was highly reversible in the dimeric forms, but completely irreversible in the tetrameric form. The Td of Pf C142/188S decreased as the enzyme became dissociated, but the monomeric form of the protein was still folded at pH 2.5, although BaPCP was completely denatured at acidic pH. These results indicate that subunit interaction plays an important role in stabilizing PCP from P. furiosus in addition to the intrinsic enhanced stability of its monomer.  相似文献   

7.
Kim J  Howell S  Huang X  Raushel FM 《Biochemistry》2002,41(42):12575-12581
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli has unveiled the existence of two molecular tunnels within the heterodimeric enzyme. These two interdomain tunnels connect the three distinct active sites within this remarkably complex protein and apparently function as conduits for the transport of unstable reaction intermediates between successive active sites. The operational significance of the ammonia tunnel for the migration of NH3 is supported experimentally by isotope competition and protein modification. The passage of carbamate through the carbamate tunnel has now been assessed by the insertion of site-directed structural blockages within this tunnel. Gln-22, Ala-23, and Gly-575 from the large subunit of CPS were substituted by mutagenesis with bulkier amino acids in an attempt to obstruct and/or hinder the passage of the unstable intermediate through the carbamate tunnel. The structurally modified proteins G575L, A23L/G575S, and A23L/G575L exhibited a substantially reduced rate of carbamoyl phosphate synthesis, but the rate of ATP turnover and glutamine hydrolysis was not significantly altered. These data are consistent with a model for the catalytic mechanism of CPS that requires the diffusion of carbamate through the interior of the enzyme from the site of synthesis within the N-terminal domain of the large subunit to the site of phosphorylation within the C-terminal domain. The partial reactions of CPS have not been significantly impaired by these mutations, and thus, the catalytic machinery at the individual active sites has not been functionally perturbed.  相似文献   

8.
The extremely thermostable NAD-dependent glutamate dehydrogenase (NAD-GluDH) from Pyrobaculum islandicum, a member of the Crenarchaeota, was crystallized, and its 3D structure has been determined by X-ray diffraction methods. The homohexameric structure of Pb. islandicum glutamate dehydrogenase (Pis-GluDH) was solved and refined at a resolution of 2.9A with a crystallographic R-factor of 19.9% (Rfree 26.0%). The structure indicates that each subunit consists of two domains separated by a deep cleft containing an active site. The secondary structural elements and catalytically important residues of the enzyme were highly conserved among the NAD(P)-dependent GluDHs from other sources. A structural comparison of Pis-GluDH with other NAD(P)-dependent GluDHs suggests that a significant difference in the alpha8-loop-alpha9 region of this enzyme is associated with its coenzyme specificity. From the analysis of the 3D structure, hydrophobic interactions between intersubunits were found to be important features for the enzyme oligomerization. It has been reported that Pis-GluDH is highly thermostable, like the GluDH of the hyperthermophilic archaeum Pyrococcus furiosus, and the increase in the intersubunit ion pair networks is responsible for the extreme thermostability of the Pc. furiosus enzyme. However, the number of intersubunit ion pairs in the Pis-GluDH molecules is much smaller than those of the Pc. furiosus GluDH. The number of hydrophobic interactions at the intersubunit interfaces were increased and responsible for the extremely high thermostability. This indicates that the major molecular strategy for high thermostability of the GluDHs may be different for each hyperthermophile.  相似文献   

9.
A somewhat neglected but essential aspect of the molecular physiology of hyperthermophiles is the protection of thermolabile metabolites and coenzymes. An example is carbamoyl phosphate (CP), a precursor of pyrimidines and arginine, which is an extremely labile and potentially toxic intermediate. The first evidence for a biologically significant interaction between carbamate kinase (CK) and ornithine carbamoyltransferase (OTC) from Pyrococcus furiosus was provided by affinity electrophoresis and co-immunoprecipitation in combination with cross-linking (Massant et al. 2002). Using the yeast two-hybrid system, Hummel-Dreyer chromatography and isothermal titration calorimetry, we obtained additional concrete evidence for an interaction between CK and OTC, the first evidence for an interaction between CK and aspartate carbamoyltransferase (ATC) and an estimate of the binding constant between CK and ATC. The physical interaction between CK and OTC or ATC may prevent thermodenaturation of CP in the aqueous cytoplasmic environment. Here we emphasize the importance of developing experimental approaches to investigate the mechanism of thermal protection of metabolic intermediates by metabolic channeling and the molecular basis of transient protein-protein interactions in the physiology of hyperthermophiles.  相似文献   

10.
11.
Pyrococcus furiosus is a marine hyperthermophile that grows optimally at 100 degrees C. Glutamate dehydrogenase (GDH) from P. furiosus is a hexamer of identical subunits and has an M(r) = 270,000 +/- 5500 at 25 degrees C. Electron micrographs showed that the subunit arrangement is similar to that of GDH from bovine liver (i.e. 3/2 symmetry in the form of a triangular antiprism). However, GDH from P. furiosus is inactive at temperatures below 40 degrees C and undergoes heat activation above 40 degrees C. Both NAD+ and NADP+ are utilized as cofactors. Apparently the inactive enzyme also binds cofactors, since the enzyme maintains the ability to bind to an affinity column (Cibacron blue F3GA) and is specifically eluted with NADP+. Conformational changes that accompany activation and thermal denaturation were detected by precision differential scanning microcalorimetry. Thermal denaturation starts at 110 degrees C and is completed at 118 degrees C. delta(cal) = 414 Kcal [mol GDH]-1. Tm = 113 degrees C. This increase in heat capacity indicates an extensive irreversible unfolding of the secondary structure as evidenced also by a sharp increase in absorbance at 280 nm and inactivation of the enzyme. The process of heat activation of GDH from 40 to 80 degrees C is accompanied by a much smaller increase in absorbance at 280 nm and a reversible increase in heat capacity with delta(cal) = 187 Kcal [mol GDH]-1 and Tm = 57 degrees C. This absorbance change as well as the moderate increase in heat capacity suggest that thermal activation leads to some exposure of hydrophobic groups to solvent water as the GDH structure is opened slightly. The increase in absorbance at 280 nm during activation is only 12% of that for denaturation. Overall, GDH appears to be well adapted to correspond with the growth response of P. furiosus to temperature.  相似文献   

12.
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli revealed the existence of a molecular tunnel that has been proposed to facilitate the translocation of reaction intermediates between remotely located active sites. Five highly conserved glutamate residues, including Glu-25, Glu-383, Glu-577, Glu-604, and Glu-916, are close together in two clusters in the interior wall of the molecular tunnel that enables the intermediate carbamate to migrate from the site of synthesis to the site of utilization. Two arginines, Arg-306 and Arg-848, are located at either end of the carbamate tunnel and participate in the binding of ATP at each of the two active sites within the large subunit of CPS. The mutation of Glu-25 or Glu-577 results in a diminution in the overall rate of carbamoyl phosphate formation. Similar effects are observed upon mutation of Arg-306 and Arg-848 to alanine residues. The conserved glutamate and arginine residues may function in concert with one another to control entry of carbamate into the tunnel prior to phosphorylation to carbamoyl phosphate. The electrostatic environment of tunnel interior may help to stabilize the tunnel architecture and prevent decomposition of carbamate through protonation.  相似文献   

13.
In eukaryotic DNA replication, replication factor-C (RFC) acts as the clamp loader, which correctly installs the sliding clamp onto DNA strands at replication forks. The eukaryotic RFC is a complex consisting of one large and four small subunits. We have determined the crystal structure of the clamp loader small subunit (RFCS) from Pyrococcus furiosus. The six subunits, of which four bind ADP in their canonical nucleotide binding clefts, assemble into a dimer of semicircular trimers. The crescent-like architecture of each subunit formed by the three domains resembles that of the delta' subunit of the E. coli clamp loader. The trimeric architecture of archaeal RFCS, with its mobile N-terminal domains, involves intersubunit interactions that may be conserved in eukaryotic functional complexes.  相似文献   

14.
S-adenosylhomocysteine hydrolase (AdoHcyHD) is an ubiquitous enzyme that catalyzes the breakdown of S-adenosylhomocysteine, a powerful inhibitor of most transmethylation reactions, to adenosine and L-homocysteine. AdoHcyHD from the hyperthermophilic archaeon Pyrococcus furiosus (PfAdoHcyHD) was cloned, expressed in Escherichia coli, and purified. The enzyme is thermoactive with an optimum temperature of 95 degrees C, and thermostable retaining 100% residual activity after 1 h at 90 degrees C and showing an apparent melting temperature of 98 degrees C. The enzyme is a homotetramer of 190 kDa and contains four cysteine residues per subunit. Thiol groups are not involved in the catalytic process whereas disulfide bond(s) could be present since incubation with 0.8 M dithiothreitol reduces enzyme activity. Multiple sequence alignment of hyperthermophilic AdoHcyHD reveals the presence of two cysteine residues in the N-terminus of the enzyme conserved only in members of Pyrococcus species, and shows that hyperthermophilic AdoHcyHD lack eight C-terminal residues, thought to be important for structural and functional properties of the eukaryotic enzyme. The homology-modeled structure of PfAdoHcyHD shows that Trp220, Tyr181, Tyr184, and Leu185 of each subunit and Ile244 from a different subunit form a network of hydrophobic and aromatic interactions in the central channel formed at the subunits interface. These contacts partially replace the interactions of the C-terminal tail of the eukaryotic enzyme required for tetramer stability. Moreover, Cys221 and Lys245 substitute for Thr430 and Lys426, respectively, of the human enzyme in NAD-binding. Interestingly, all these residues are fairly well conserved in hyperthermophilic AdoHcyHDs but not in mesophilic ones, thus suggesting a common adaptation mechanism at high temperatures.  相似文献   

15.
The identification of the determinants of protein thermal stabilization is often pursued by comparing enzymes from hyperthermophiles with their mesophilic counterparts while direct structural comparisons among proteins and enzymes from hyperthermophiles are rather uncommon. Here, oligomeric beta-glycosidases from the hyperthermophilic archaea Sulfolobus solfataricus (Ss beta-gly), Thermosphaera aggregans (Ta beta-gly), and Pyrococcus furiosus (Pf beta-gly), have been compared. Studies of FTIR spectroscopy and kinetics of thermal inactivation showed that the three enzymes had similar secondary structure composition, but Ss beta-gly and Ta beta-gly (temperatures of melting 98.1 and 98.4 degrees C, respectively) were less stable than Pf beta-gly, which maintained its secondary structure even at 99.5 degrees C. The thermal denaturation of Pf beta-gly, followed in the presence of SDS, suggested that this enzyme is stabilized by hydrophobic interactions. A detailed inspection of the 3D-structures of these enzymes supported the experimental results: Ss beta-gly and Ta beta-gly are stabilized by a combination of ion-pairs networks and intrasubunit S-S bridges while the increased stability of Pf beta-gly resides in a more compact protein core. The different strategies of protein stabilization give experimental support to recent theories on thermophilic adaptation and suggest that different stabilization strategies could have been adopted among archaea.  相似文献   

16.
The role of an 18-residue ion-pair network, that is present in the glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus, in conferring stability to other, less stable homologous enzymes, has been studied by introducing four new charged amino acid residues into the subunit interface of glutamate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima. These two GDHs are 55 % identical in amino acid sequence, differ greatly in thermo-activity and stability and derive from microbes with different phylogenetic positions. Amino acid substitutions were introduced as single mutations as well as in several combinations. Elucidation of the crystal structure of the quadruple mutant S128R/T158E/N117R/S160E T. maritima glutamate dehydrogenase showed that all anticipated ion-pairs are formed and that a 16-residue ion-pair network is present. Enlargement of existing networks by single amino acid substitutions unexpectedly resulted in a decrease in resistance towards thermal inactivation and thermal denaturation. However, combination of destabilizing single mutations in most cases restored stability, indicating the need for balanced charges at subunit interfaces and high cooperativity between the different members of the network. Combination of the three destabilizing mutations in triple mutant S128R/T158E/N117R resulted in an enzyme with a 30 minutes longer half-life of inactivation at 85 degrees C, a 3 degrees C higher temperature optimum for catalysis, and a 0.5 degrees C higher apparent melting temperature than that of wild-type glutamate dehydrogenase. These findings confirm the hypothesis that large ion-pair networks do indeed stabilize enzymes from hyperthermophilic organisms.  相似文献   

17.
The amidotransferase family of enzymes utilizes the ammonia derived from the hydrolysis of glutamine for a subsequent chemical reaction catalyzed by the same enzyme. The ammonia intermediate does not dissociate into solution during the chemical transformations. A well-characterized example of the structure and mechanism displayed by this class of enzymes is provided by carbamoyl phosphate synthetase (CPS). Carbamoyl phosphate synthetase is isolated from Escherichia coli as a heterodimeric protein. The smaller of the two subunits catalyzes the hydrolysis of glutamine to glutamate and ammonia. The larger subunit catalyzes the formation of carbamoyl phosphate using 2 mol of ATP, bicarbonate, and ammonia. Kinetic investigations have led to a proposed chemical mechanism for this enzyme that requires carboxy phosphate, ammonia, and carbamate as kinetically competent reaction intermediates. The three-dimensional X-ray crystal structure of CPS has localized the positions of three active sites. The nucleotide binding site within the N-terminal half of the large subunit is required for the phosphorylation of bicarbonate and subsequent formation of carbamate. The nucleotide binding site within the C-terminal domain of the large subunit catalyzes the phosphorylation of carbamate to the final product, carbamoyl phosphate. The three active sites within the heterodimeric protein are separated from one another by about 45 A. The ammonia produced within the active site of the small subunit is the substrate for reaction with the carboxy phosphate intermediate that is formed in the active site found within the N-terminal half of the large subunit of CPS. Since the ammonia does not dissociate from the protein prior to its reaction with carboxy phosphate, this intermediate must therefore diffuse through a molecular tunnel that connects these two sites with one another. Similarly, the carbamate intermediate, initially formed at the active site within the N-terminal half of the large subunit, is the substrate for phosphorylation by the ATP bound to the active site located in the C-terminal half of the large subunit. A molecular passageway has been identified by crystallographic methods that apparently facilitates diffusion between these two active sites within the large subunit of CPS. Synchronization of the chemical transformations is controlled by structural perturbations among the three active sites. Molecular tunnels between distant active sites have also been identified in tryptophan synthase and glutamine phosphoribosyl pyrophosphate amidotransferase and are likely architectural features in an expanding list of enzymes.  相似文献   

18.
19.
Abstract: The structure determination of the glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus has been completed at 2.2 Å resolution. The structure has been compared with the glutamate dehydrogenases from the mesophiles Clostridium symbiosum, Escherichia coli and Neurospora crassa . This comparison has revealed that the hyperthermophilic enzyme contains a striking series of networks of ion-pairs which are formed by regions of the protein which contain a high density of charged residues. Such regions are not found in the mesophilic enzymes and the number and extent of ion-pair formation is much more limited. The ion-pair networks are clustered at both inter domain and inter subunit interfaces and may well represent a major stabilising feature associated with the adaptation of enzymes to extreme temperatures.  相似文献   

20.
An open reading frame optimized for expression of 6,7-dimethyl-8-ribityl-lumazine synthase of the hyperthermophilic bacterium Aquifex aeolicus in Escherichia coli was synthesized and expressed in a recombinant E. coli strain to a level of around 15 %. The recombinant protein was purified by heat-treatment and gel-filtration. The protein was crystallized in the cubic space group I23 with the cell dimensions a = b = c = 180.8 A, and diffraction data were collected to 1.6 A resolution. The structure was solved by molecular replacement using lumazine synthase from Bacillus subtilis as search model. The structure of the A. aeolicus enzyme was refined to a resolution of 1.6 A. The spherical protein consists of 60 identical subunits with strict icosahedral 532 symmetry. The subunit fold is closely related to that of the B. subtilis enzyme (rmsd 0.80 A). The extremely thermostable lumazine synthase from A. aeolicus has a melting temperature of 119.9 degrees C. Compared to other icosahedral and pentameric lumazine synthases, the A. aeolicus enzyme has the largest accessible surface presented by charged residues and the smallest surface presented by hydrophobic residues. It also has the largest number of ion-pairs per subunit. Two ion-pair networks involving two, respectively three, stacking arginine residues assume a distinct role in linking adjacent subunits. The findings indicate the influence of the optimization of hydrophobic and ionic contacts in gaining thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号