首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanistic models of nutrient uptake are essential to the study of plant-soil interactions. In these models, uptake rates depend on the supply of the nutrient through the soil and the uptake capacity of the roots. The behaviour of the models is complex, although only six to ten parameters are used. Our goal was to demonstrate a comprehensive and efficient method of exploring a steady-state uptake model with variation in parameters across a range of values described in the literature. We employed two analytical techniques: the first a statistical analysis of variance, and the second a graphical representation of the simulated response surface. The quantitative statistical technique allows objective comparison of parameter and interaction sensitivity. The graphical technique uses a judicious arrangement of figures to present the shape of the response surface in five dimensions. We found that the most important parameters controlling uptake per unit length of root are the average dissolved nutrient concentration and the maximal rate of nutrient uptake. Root radius is influential if rates are expressed per unit root length; on a surface area basis, this parameter is less important. The next most important parameter is the effective diffusion coefficient, especially in the uptake of phosphorus. The interactions of parameters were extremely important and included three and four dimensional effects. For example, limitation by maximal nutrient influx rate is approached more rapidly with increasing nutrient solution concentration when the effective diffusion coefficient is high. We also note the ecological implications of the response surface. For example, in nutrient-limited conditions, the rate of uptake is best augmented by extending root length; when nutrients are plentiful increasing uptake kinetics will have greater effect.  相似文献   

2.
Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants. Since the apex is not only a center of growth and metabolism, but also an important place of auxin synthesis and export, the aims of this study were to distinguish whether the apex demand or auxin synthesized in the apex regulates assimilate and nutrients partitioning within plant, and to explain the reason for the lower K+-uptake rate of the apex-removed plant. In comparison with the control plant, covering the shoot apex with a black transparent plastic bag reduced net increases in dry matter and nutrients; however, the distribution of the dry matter and nutrients between shoot and roots and nutrient-uptake rates were not changed. Removal of the shoot apex shifted the dry mass and nutrients distributions to roots, and reduced the rate of nutrient uptake. Application of 1-naphthylacetic acid (NAA) could partly replace the role of the removed apex, stimulated assimilate and nutrient deposition into the treated tissue, and enhanced the reduced plasma membrane ATPase activity of roots to the control level. However, treatment of the apex-removed plants with NAA could not rescue the reduced nutrient uptake rate and the shifted assimilates and nutrients partitioning caused by excision of the apex. Higher nutrient uptake rate of the intact plants could not be explained by root growth parameters, such as total root surface area and number of root tips. The results from the present study indicate that strong apex demand determined assimilates and nutrients partitioning and nutrient-uptake rate in tobacco (Nicotiana tabacum) plants.  相似文献   

3.
Spring wheat was grown in the field under deficient and sufficient levels of soil K and with high and low supplies of fertiliser nitrogen. Measurements were made of K uptake, soil nutrient supply parameters, root growth and, in solution culture, root influx parameters. Mechanistic models predicted uptake reasonably well under K-deficient conditions, but over-predicted uptake, by as much as 4 times, under K-sufficient conditions. The over-prediction was apparently due to poor characterisation of plant demand.  相似文献   

4.
A simulation model is presented which describes uptake of a growth limiting nutrient from soil by a growing root system. The root surface is supposed to behave like a zero-sink. Uptake of the nutrient is therefore determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter-root competition and time dependent root density are accounted for by assigning to each root a finite cylindrical soil volume that delivers nutrients. The radius of these cylinders declines with increasing root density. Experiments with rape plants grown on quartz sand were used to evaluate the model. Simulated nitrogen uptake agreed well with observed uptake under nitrogen limiting conditions. In case no nitrogen limitation occurred nitrogen uptake was overestimated by the model, probably because the roots did not behave like a zero-sink any more.  相似文献   

5.
Adhikari  Tapan  Rattan  R. K. 《Plant and Soil》2000,220(1-2):235-242
The Barber-Cushman mechanistic nutrient uptake model which has been utilized extensively to describe and predict nutrient uptake by crop plants at different stages of crop growth was evaluated for its ability to predict the Zn uptake by rice seedlings. Uptake of the nutrient is, therefore, determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter root competition and time dependent root density are accounted for by soil volume that delivers nutrients. The radii of these cylinders decline with increasing density. Since mass flow and diffusion each supply zinc to the root, the process can be described mathematically using the model of Barber-Cushman (1984). The 11 parameters of the model for the uptake by rice cultivars were measured by established experimental techniques. Zinc uptake at different growth stages predicted by the model was compared to measured zinc uptake by rice cultivars grown on sandy loam soil in a green house. Predicted zinc uptake was significantly correlated with observed uptake r 2=0.99**. Sensitivity analysis was also used to investigate the impact of changes in soil nutrient supply, root morphological and root uptake kinetic parameters on simulated nutrient uptake. Overall results of sensitivity analysis indicate that the half distance between root axes, rate of root growth and water flux affect the uptake of zinc particularly at their higher values rather than at lower values and DaZn is the most sensitive parameter for zinc uptake at its lower values.  相似文献   

6.
Arbuscular mycorrhizas, associations between plant roots and soil fungi, are ubiquitous among land plants. Arbuscular mycorrhizas can be beneficial for plants by overcoming limitations in nutrient supply. Hyphae, which are long and thin fungal filaments extending from the root surface into the soil, increase the volume of soil accessible for plant nutrient uptake. However, no models so far specifically consider individual hyphae. We developed a mathematical model for nutrient uptake by individual fungal hyphae in order to assess suitable temporal and spatial scales for a new experimental design where fungal uptake parameters are measured on the single hyphal scale. The model was developed based on the conservation of nutrients in an artificial cylindrical soil pore (capillary tube) with adsorbing wall, and analysed based on parameter estimation and non-dimensionalisation. An approximate analytical solution was derived using matched asymptotic expansion. Results show that nutrient influx into a hypha from a small capillary tube is characterized by three phases: Firstly, uptake rapidly decreases as the hypha takes up nutrients, secondly, the depletion zone reaches the capillary wall and thus uptake is sustained by desorption of nutrients from the capillary wall, and finally, uptake goes to zero after nutrients held on the capillary wall have been completely depleted. Simulating different parameter regimes resulted in recommending the use of capillaries filled with hydrogel instead of water in order to design an experiment operating over measurable time scales.  相似文献   

7.
Nutrient uptake is critical for crop growth and is determined by root foraging in soil. Growth and branching of roots lead to effective root placement to acquire nutrients, but relatively little is known about absorption of nutrients at the root surface from the soil solution. This knowledge gap could be alleviated by understanding sources of genetic variation for short-term nutrient uptake on a root length basis. A modular platform called RhizoFlux was developed for high-throughput phenotyping of multiple ion-uptake rates in maize (Zea mays L.). Using this system, uptake rates were characterized for the crop macronutrients nitrate, ammonium, potassium, phosphate, and sulfate among the Nested Association Mapping (NAM) population founder lines. The data revealed substantial genetic variation for multiple ion-uptake rates in maize. Interestingly, specific nutrient uptake rates (nutrient uptake rate per length of root) were found to be both heritable and distinct from total uptake and plant size. The specific uptake rates of each nutrient were positively correlated with one another and with specific root respiration (root respiration rate per length of root), indicating that uptake is governed by shared mechanisms. We selected maize lines with high and low specific uptake rates and performed an RNA-seq analysis, which identified key regulatory components involved in nutrient uptake. The high-throughput multiple ion-uptake kinetics pipeline will help further our understanding of nutrient uptake, parameterize holistic plant models, and identify breeding targets for crops with more efficient nutrient acquisition.

A platform for quantifying root uptake rates of multiple, simultaneous nutrients reveals these rates are correlated among nutrients, are heritable, and may have a common genetic basis.  相似文献   

8.
The gradient in soil characteristics from the bulk soil to the root surface is important to roots and to the organisms that live in the rhizosphere. Our ability to measure ion concentrations at the root surface is extremely limited, and models are largely untested. We used data from a well studied Norway spruce stand in SW Sweden to compare the measured difference in nutrient concentrations between rhizosphere and bulk soil with the difference predicted by a steady-state simulation model based on ecosystem budgets of nutrient uptake. The simulation model predicted depletion of NH4, Ca, Mg, K in the rhizosphere, which shows that budgeted uptake rates were greater than the mass flow of bulk solution towards the root. In plots treated with ammonium sulphate, the model predicted an accumulation of S in the rhizosphere. In contrast, the observed rhizosphere concentrations were generally enriched in nutrients, relative to bulk soil. Collecting rhizosphere soil adhering to root surfaces may not be an appropriate method for describing the concentration gradient around the root. In addition, the simulation model omits some processes affecting conditions in the rhizosphere that are important to explaining nutrient uptake.  相似文献   

9.
Nutrient uptake and allocation at steady-state nutrition   总被引:13,自引:0,他引:13  
Ingestad, T. and Ågren, G. I. 1988. Nutrient uptake and allocation at steady-state nutrition. - Physiol. Plant. 72: 450–459. Net nutrient uptake and translocation rates are discussed for conditions of steady-state nutrition and growth. Under these conditions, the relative uptake rate is equal to the relative growth rate, for whole plants as well as for plant parts, since the root/shoot ratio and internal concentrations remain stable. The nutrient productivity and the minimum internal concentration are parameters characteristic for the plant and the nutrient. A conceptual, mathematical model, based on these two fundamental parameters is used for calculation and prediction of the net nutrient uptake rate, which is required to maintain steady-state nutrition at a specified internal nutrient concentration or relative growth rate. When uptake rate is expressed on the basis of the root growth rate, there is, up to optimum, a strong linear relationship between uptake rate and the internal concentration of the limiting nutrient. More complicated and less consistent relationships are obtained when uptake rate is related to root biomass. The limiting factor for suboptimum uptake is the amount of nutrients becoming available at the root surface. When replenishment is efficient, e.g. with vigorous stirring, the concentration requirement at the root surface appears to be extremely low, even at optimum. In the suboptimum range of nutrition, the effect of nutrient status on root growth rate is a critical factor with a strong feed-back on nutrition, growth and allocation. At supraoptimum conditions, the uptake mechanism is interpreted as a protection against too high uptake rates and internal concentrations at high external concentration. In birch (Betula pendula Roth.), the allocation of nitrogen to the shoots is high compared to that of potassium and also to that of phosphorus at low nitrogen or phosphorus status. With decreasing stress, phosphorus allocation becomes more and more similar to nitrogen allocation. The formulation of a mathematical model for calculation of allocation of biomass and nutrients requires more exact information on the quantitative dependence of the growth-regulating processes on nutrition.  相似文献   

10.
植物主要依赖自身根系从土壤中获取矿质养分; 具有不同根形态的植物对于养分的吸收能力存在差异。丛枝菌根真菌(AMF)能与陆地植物根系形成共生关系, 帮助植物吸收矿质养分。但是, AMF对于植物根系养分吸收的促进效应是否会受根形态的影响还鲜有研究。该研究选取4种不同根形态基因型水稻(根毛缺陷突变体rhl1、侧根缺陷突变体iaa11、不定根缺失突变体arl1和野生型Kas)为研究对象, 设置2种施氮水平处理(低氮: 20 mg·kg-1氨氮; 高氮: 100 mg·kg-1氨氮), 利用稳定同位素15N示踪标记技术, 探究AMF和氮添加对不同根形态植物氮吸收的影响。研究结果发现, 相比低氮处理, 高氮处理下, rhl1、Kas、iaa11arl1的茎叶15N浓度分别提高了60%、72%、128%与118%, 说明氮添加显著促进了水稻氮吸收, 且iaa11arl1对氮添加的响应更强烈。在低氮水平下, AMF对rhl1、Kas、iaa11arl1氮吸收的平均效应值分别为17%、31%、42%、51%, 表明AMF对于植物氮吸收的促进效应受根形态影响, iaa11arl1对AMF的响应明显高于Kas与rhl1; 相较于低氮水平, 高氮水平下AMF对于不同根形态水稻氮吸收的促进效应都会显著降低, 表明氮添加削弱了AMF对植物氮吸收的促进效应。该研究阐明了4种不同根形态基因型水稻氮养分吸收存在显著差异, 其中氮吸收能力较弱的基因型水稻对AMF的响应更强, 该结果补充了植物与AMF在养分吸收上存在功能互补的控制实验证据。  相似文献   

11.
The aim of this research was to investigate the effect of arbuscular mycorrhizal (AM) colonisation on root morphology and nitrogen uptake capacity of carob ( Ceratonia siliqua L.) under high and low nutrient conditions. The experimental design was a factorial arrangement of presence/absence of mycorrhizal fungus inoculation ( Glomus intraradices) and high/low nutrient status. Percent AM colonisation, nitrate and ammonium uptake capacity, and nitrogen and phosphorus contents were determined in 3-month-old seedlings. Grayscale and colour images were used to study root morphology and topology, and to assess the relation between root pigmentation and physiological activities. AM colonisation lead to a higher allocation of biomass to white and yellow parts of the root. Inorganic nitrogen uptake capacity per unit root length and nitrogen content were greatest in AM colonised plants grown under low nutrient conditions. A better match was found between plant nitrogen content and biomass accumulation, than between plant phosphorus content and biomass accumulation. It is suggested that the increase in nutrient uptake capacity of AM colonised roots is dependent both on changes in root morphology and physiological uptake potential. This study contributes to an understanding of the role of AM fungi and root morphology in plant nutrient uptake and shows that AM colonisation improves the nitrogen nutrition of plants, mainly when growing at low levels of nutrients.  相似文献   

12.
土壤养分空间异质性与植物根系的觅食反应   总被引:41,自引:5,他引:41  
植物在长期进化过程中,为了最大限度地获取土壤资源,对养分的空间异质性产生各种可塑性反应.包括形态可塑性、生理可塑性、菌根可塑性等.许多植物种的根系在养分丰富的斑块中大量增生,增生程度种间差异较大,并受斑块属性(斑块大小、养分浓度)、营养元素种类和养分总体供应状况的影响.植物还通过调整富养斑块中细根的直径、分枝角、节问距以及空间构型来实现斑块养分的高效利用.根系的生理可塑性及菌根可塑性可能在一定程度上影响其形态可塑性.生理可塑性表现为处于不同养分斑块上的根系迅速调整其养分吸收速率,从而增加单位根系的养分吸收,对在时间上和空间上变化频繁的空间异质性土壤养分的利用具有重要意义,可在一定程度上弥补根系增生反应的不足.菌根可塑性目前研究较少,一些植物种的菌根代替细根实现在富养斑块中的增生.菌根增生的碳投入养分吸收效率较高、根系增生对增加养分吸收的作用较复杂,取决于养分离子在土壤中的移动性能以及是否存在竞争植物;对植物生长(竞争能力)的作用因种而异,一些敏感种由此获得生长效益,而其它一些植物种受影响较小.植物个体对土壤养分空间异质性反应能力和生长差异,影响其在群落中的地位和命运,最终影响群落组成及其结构.  相似文献   

13.
Halophytes comprise a promising group of plants for different applications due to their special physiological characteristics and biochemical composition. Their ability to grow in salt-affected habitats makes them useful for recycling the nutrient-containing effluents from saline aquacultures. The potential of different halophytes for nutrient uptake and remediation has been investigated in several laboratory and field studies and the application of natural and constructed wetlands. Various factors influence the filtration capacity of a halophyte biofilter for aquaculture effluents, such as salinity, flooding, nutrient level, root characteristics and technical applications. Those effects studied so far are characterized and those in need of further study are outlined. Technical aspects in artificial wetlands such as water flow direction, water level, hydraulic retention time and hydraulic loading rate, influence the transformation of the nutrients within the wetland and their uptake by the plants. Open as well as re-circulating systems are considered. Because soil processes are lacking, the application of hydroponic culture shifts the importance of nutrient removal toward plant uptake. This is important when besides the pure nutrient removal the recycling of the nutrients become a focus in terms of sustainability. The economic feasibility, including different utilization possibilities, of selected halophytes with filtering capacities is delineated. The economic attractiveness of a halophytic biofilter can also be upgraded by the use of salt-tolerant species with a commercial value. Modularized versions of waste water treatments by plants in temperate and tropic regions could help to reduce the nutrient load in the bodies of water and to recycle the nutrients. More effort is needed to determine the specific nutrient removal mechanisms within different types of wetlands planted with halophytes and to point out appropriate halophyte species and wetland conditions for different applications.  相似文献   

14.
Diffusion of ions in the soil depends on soil moisture content. In a dry soil, transport of nutrients towards the root and the concomitant uptake could be reduced. However, pot and field experiments showed that this is not always the case. The objective of this paper was to investigate possible mechanisms of plants to counteract reduced nutrient supply due to water shortage. A split root system was used to investigate P and K inflow of oat and sugar beet at different soil moisture contents (Θ) without water shortage for the plant. The measured average P and K inflows were compared to model calculations considering diffusion, mass-flow, sorption and uptake processes. In the calculations, soil dryness impeded diffusion and decreased nutrient inflow as expected. Measured K inflow was decreased in a similar way indicating that Θ influences K diffusion. In contrast to this, measured P inflow was not influenced by Θ and under-estimated by the model. Low and high molecular exudates were collected at different water supply levels showing that exudation rate of both compounds was increased at water shortage. Especially the high molecular exudates (i.e. mainly mucilage) from water-stressed plants increased P concentration in soil solution under dry conditions in an incubation experiment. Calculated inflow considering this increased P concentration agreed well with measured P inflow indicating that exudation of mucilage could be a mechanism to overcome nutrient transport problems due to soil dryness.  相似文献   

15.
The parent material of a soil determines the original supply of those nutrient elements that are released by weathering and influences the balance between nutrient loss and retention. Organic acids and exudates produced by microorganisms and plants enhance the weathering of minerals and the release of nutrients. Nutrients may be stored in organic cycles or as ions adsorbed to clay and organic matter. Nutrients are lost mainly by leaching, both as dissolved ions and when associated with soluble organic components. Soil formation evidently affects these processes and modifies the environment at different depths as soil horizons develop. Strong interactions between mineral and organic colloids occur where most residues are added below ground, as in grasslands, or mixed with mineral soil by faunal activity, as in some forests. These systems tend to be nutrient conserving. The addition of organic residues to the soil surface often results in slow decomposition, the tie-up of many nutrients in biologically resistant humic materials, and the generation of organic acids that are active in leaching and chelation. These soils tend to lose nutrients by leaching and become strongly acidic with time. Leaching is strongest in uplands with net downward flows to deep water tables, and may be dampened or obviated in lowlands with strong upward fluxes due to artesian pressure or capillary rise from a water table that is close to the surface. Pedogenic features such as clayeyB horizons or duripans may alter water flow. Simonson's concepts that all basic soil-forming processes occur to some degree in all soils are critical to developing models describing soil formation and nutrient cycles.  相似文献   

16.
The Barber-Cushman mechanistic nutrient uptake model, which has been utilized extensively to describe and predict nutrient uptake by crop plants, was evaluated for its ability to predict K, Mg, and P uptake by loblolly pine (Pinus taeda L.) seedlings. Sensitivity analyses were also used to investigate the impact of changes in soil nutrient supply, root morphological, and root uptake kinetics parameters on simulated nutrient uptake. Established experimental techniques were utilized to define the 11 parameters needed to model uptake by 1-0 seedlings of K, Mg, and P from a modified A horizon soil (Lilly series). Model predictions of K and P uptake over a 180-d growth period were underestimated by 6 and 11%, respectively. Estimates of Mg uptake were underestimated by 62%. While the level of agreement between predicted and observed K and P values was quite acceptable, analysis of parameter values and results of sensitivity analyses both indicated that the model underestimation of Mg uptake was the result of applying an Imax value developed under relatively low Mg concentration to a situation in which the functional Imax would be much higher due to the dominance of passive versus active uptake. Overall results of sensitivity analyses indicate that under the circumstances investigated, Imax, was the primary variable controlling plant uptake of K, Mg, and P. The dominance of this term over others was due to the relatively high Cli values for all three nutrients. Reducing (-50%) or increasing (+ 100%) other soil supply, root morphological, and remaining root uptake kinetics values did not substantially alter model estimates of nutrient uptake.  相似文献   

17.
杉木林采伐迹地撂荒后植被恢复早期的生物量与养分积累   总被引:11,自引:1,他引:11  
撂荒是传统杉木经营制度中的重要内容 ,其目的是通过植被的自然演替来恢复土壤肥力 ,从而实现杉木人工林的可持续经营。通过对湖南会同杉木人工林采伐迹地撂荒后 1~ 5 a内的植被生物量和养分积累的定位观测 ,重点分析撂荒后植被恢复过程中植物生长对策和植物养分积累在杉木人工林可持续经营中的作用。结果表明 :会同杉木林采伐迹地撂荒后的 1~ 4a为草本植物阶段 ,五节芒 ( Misocanthusfloridu-lus)、荩草 ( Arthraxon hispidus)、一年蓬 ( Erigeron annuus)为优势种 ,5 a后进入灌木植物阶段 ,阳性喜光树种占绝对优势 ,且植物的树高生长分化明显 ,大于 3m的树高等级中拟赤杨 ( Alniphyllum fortunei)和小果冬青 ( Ilex micrococca)占有最大的比例 ,在 2~ 3m的高度等级中枫香 ( Liquidambar formosana)、苦楝( Melia azedarach)、山苍子 ( Litsea cubeba)等植株数量最多。植被总生物量从 1 .798t/hm2 增加到 1 6.2 35 t/hm2 ,其中灌木层生物量为 1 .0 4 8~ 7.773t/hm2 ,草本植物生物量为 0 .75~ 6.92 9t/hm2 ,第 5年植被系统的年生产力为 4.1 8t/( hm2 ·a) ,接近 7a生第 2代杉木林年平均生产力。撂荒 2 a后植被系统就开始产生枯落物 ,随植被恢复时间增加死地被物生物量从 0 .892 t/hm2 增加到 2 .0  相似文献   

18.
Silberbush  M.  Ben-Asher  J. 《Plant and Soil》2001,233(1):59-69
Soilless plant growth systems are widely used as a means to save irrigation water and to reduce groundwater contamination. While nutrient concentrations in the growth medium are depleted due to uptake by the plants, salinity and toxic substances accumulate due to transpiration. A theoretical model is suggested, to simulate nutrient uptake by plants grown in soilless cultures with recycled solutions. The model accounts for salinity accumulation with time and plant growth, and its effects on uptake of the different nutrients by means of interaction with Na and Cl ions. The sink term occurs due to uptake by a growing root system. Influx as a function of the ion concentration is according to Michaelis–Menten active mechanisms for K+, NO3 -N, NH4 +-N, PO4-P, Ca2+, Mg2+ and SO4 2-, whose influx parameters are affected by Na and Cl, but not with time (age). Sodium influx is passive above a critical concentration. Sum of cations–anions concentrations is balanced by Cl to maintain electro-neutrality of the growth solution. Salinity (by means of Na concentration) suppresses root and leaf growth, which further effect uptake and transpiration. The model accounts for instantaneous transpiration losses, during daytime only and its effect on uptake of nutrients and plant development due to salt accumulation. The model was tested against NO3 and K+ uptake by plants associated with cumulative transpiration and with different NaCl salinity levels. Deviations from observed K+ uptake should be attributed to the salinity tolerance of the plants. In a study with data obtained from published literature, the model indicated that nutrient depletion and salinity buildup might be completely different with fully grown-up plants (that do not grow) and plants that grow with time. Depletion of different nutrients are according to their initial concentration and plant uptake rate, but also affected by their interactions with Na and Cl ions.  相似文献   

19.
植物与土壤微生物在调控生态系统养分循环中的作用   总被引:14,自引:0,他引:14       下载免费PDF全文
陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号