首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To clarify responses of plant and soil carbon (C) and nitrogen (N) pools in grassland ecosystem to N addition, a field experiment was performed in a grassland in Keerqin Sandy Lands, Northeast China. We investigated vegetation composition and C and N pools of plant and soil (0–30 cm) after five consecutive years of N addition at a rate of 20 g N m?2 y?1. Vegetation composition and species diversity responded dramatically to N addition, as dominance by C4 perennials was replaced with C3 annuals. Carbon in aboveground pool increased significantly (over two-fold), mainly due to the increase of the C in aboveground living plants and surface litter, which increased by 98 and 134%, respectively. Although soil C did not change significantly, the root C pool decreased in response to 5 years of N addition. The total ecosystem C pool was not significantly impacted by N addition because the large soil pool did not respond to N addition, and the increase in aboveground C was offset by the decrease in root C pool. Moreover, N addition significantly increased the aboveground N pool, but had no significant effects on belowground and total ecosystem N pools. Our results suggest that in the mid-term N addition alters the C and N partitioning in above- and belowground pools, but has no significant effects on total ecosystem C and N pools in these N-limited grasslands.  相似文献   

2.
3.
4.
It is argued that the inclusion of spatially heterogeneous environments in biodiversity reserves will be an effective means of encouraging ecosystem resilience and plant community conservation under climate change. However, the resilience and resistance of plant populations to global change, the specific life‐history traits involved and the spatial scale at which environmentally driven demographic variation is expressed remains largely unknown for most plant groups. Here we address these questions by reporting an empirical investigation into the impacts of an unprecedented 3‐year drought on the demography, population growth rates (λ) and biogeographical distribution of core populations of the perennial grassland species Austrostipa aristiglumis in semiarid Australia. We use life‐history analysis and periodic matrix population models to specifically test the hypothesis that patch‐ and habitat‐scale variation in vital life‐history parameters result in spatial differences in the resilience and resistance of A. aristiglumis populations to extreme drought. We show that the development of critical soil water deficits during drought resulted in collapse of adult A. aristiglumis populations (λ?1), rapid interhabitat phytosociological change and overall contraction towards mesic refugia where populations were both more resistant and resilient to perturbation. Population models, combined with climatic niche analysis, suggest that, even in core areas, a significant reduction in size and habitat range of A. aristiglumis populations is likely under climate change expected this century. Remarkably, however, we show that even minor topographic variation (0.2–3 m) can generate significant variation in demographic parameters that confer population‐level resilience and resistance to drought. Our findings support the hypothesis that extreme climatic events have the capacity to induce rapid, landscape‐level shifts in core plant populations, but that the protection of topographically heterogeneous environments, even at small spatial scales, may play a key role in conserving biodiversity under climate change in the coming century.  相似文献   

5.
6.
The degree to which biodiversity may promote the stability of grasslands in the light of climatic variability, such as prolonged summer drought, has attracted considerable interest. Studies so far yielded inconsistent results and in addition, the effect of different grassland management practices on their response to drought remains an open question. We experimentally combined the manipulation of prolonged summer drought (sheltered vs. unsheltered sites), plant species loss (6 levels of 60 down to 1 species) and management intensity (4 levels varying in mowing frequency and amount of fertilizer application). Stability was measured as resistance and resilience of aboveground biomass production in grasslands against decreased summer precipitation, where resistance is the difference between drought treatments directly after drought induction and resilience is the difference between drought treatments in spring of the following year. We hypothesized that (i) management intensification amplifies biomass decrease under drought, (ii) resistance decreases with increasing species richness and with management intensification and (iii) resilience increases with increasing species richness and with management intensification.We found that resistance and resilience of grasslands to summer drought are highly dependent on management intensity and partly on species richness. Frequent mowing reduced the resistance of grasslands against drought and increasing species richness decreased resistance in one of our two study years. Resilience was positively related to species richness only under the highest management treatment. We conclude that low mowing frequency is more important for high resistance against drought than species richness. Nevertheless, species richness increased aboveground productivity in all management treatments both under drought and ambient conditions and should therefore be maintained under future climates.  相似文献   

7.
Ocheltree  T. W.  Mueller  K. M.  Chesus  K.  LeCain  D. R.  Kray  J. A.  Blumenthal  D. M. 《Oecologia》2020,192(1):55-66
Oecologia - Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil–water...  相似文献   

8.
1.  There is growing concern that the current loss of biodiversity may negatively affect ecosystem functioning and stability. Although it has been shown that species loss may reduce biomass production and increase temporal variability, experimental evidence that species loss affects ecosystem resistance and resilience after perturbation is limited.
2.  Here, we use the response of experimental plant communities – which differ in diversity – to a natural drought to disentangle the effects of diversity and biomass on resistance, recovery and resilience.
3.  Resistance to drought decreased with diversity, but this pattern was highly dependent upon pre-drought biomass. When corrected for biomass, no relationship between diversity and resistance was observed: at each level of diversity, biomass production was reduced by approximately 30%.
4.  In contrast, recovery (change in biomass production after drought) increased with diversity and was independent of biomass. Resilience (measured as the ratio of post- to pre-drought biomass) was similar at each level of diversity.
5.   Synthesis . On the one hand, our results confirm earlier findings that a positive relationship between diversity and resistance is mainly driven by pre-perturbation performance rather than by diversity. However, the results also show that recovery after drought strongly increased with diversity, independent of performance. We conclude that it is this diversity-dependent recovery which allowed diverse, productive communities to reach the same level of resilience as less diverse (and productive) communities. This finding provides strong experimental evidence for the insurance hypothesis.  相似文献   

9.
In the Serengeti National Park, Tanzania, precipitation and soil nitrogen vary greatly between northwestern tallgrass areas and southeastern shortgrass areas, with the tallgrass having higher total precipitation and lower soil fertility. We used a model of grassland productivity, carbon/nitrogen cycling, and abiotic factors to test the hypothesis that tallgrass productivity is limited primarily by nitrogen availability while shortgrass productivity is limited by water. Under observed grazing intensities and ungrazed conditions, precipitation exerted primary control over grassland productivity for both regions, with differences in soil texture mediating soil water availability to the grasses. Mineral nitrogen availability interacted with water availability to influence productivity at precipitation levels 130% of the mean. Nitrogen mineralization and precipitation were positively related for each grassland type, however, nitrification varied both between grassland types and between grazed and ungrazed conditions. Combined mineralization and nitrification could not maintain soil mineral nitrogen levels in the face of plant nitrogen uptake stimulated by increased precipitation, thus providing the mechanism by which nitrogen becomes a secondary limiting factor for both grasslands. Model experiments indicated that the pattern of primary limitation by precipitation and secondary limitation by nitrogen was robust to model assumptions concerning ungulate deposition of urine and dung nitrogen to the soil.  相似文献   

10.
Fire and nitrogen (N) addition, both widely used grassland restoration strategies, strongly influence community composition and ecosystem functioning. However, little is known about their effects on plant nutrient resorption from senescing leaves, especially in semi-arid ecosystems. We evaluated the effects of fire, N addition (5.25 g N m−2 yr−1) and their potential interactions on nutrient resorption in five plant species in a semi-arid grassland in northern China. Foliar nutrient concentrations and resorption proficiencies and efficiencies varied substantially among species and functional groups. Fire increased green leaf N concentration ([N]g) and decreased N resorption proficiency (N RP), P resorption proficiency (P RP) and P resorption efficiency (P RE). N addition led to higher [N]g and lower N resorption, whereas it did not affect P related responses. There was no interaction between fire and N addition to affect all response variables except for green leaf P concentration ([P]g). These results suggest that fire and N addition can influence ecosystem nutrient cycling directly by changing resorption patterns and litter quality. Given the substantial interspecific variations in nutrient content and resorption and the potentially changing community composition, both fire and N addition may have indirect impacts on ecosystem nutrient cycling in this semi-arid grassland.  相似文献   

11.
Water availability is the primary constraint to aboveground net primary productivity (ANPP) in many terrestrial biomes, and it is an ecosystem driver that will be strongly altered by future climate change. Global circulation models predict a shift in precipitation patterns to growing season rainfall events that are larger in size but fewer in number. This “repackaging” of rainfall into large events with long intervening dry intervals could be particularly important in semi-arid grasslands because it is in marked contrast to the frequent but small events that have historically defined this ecosystem. We investigated the effect of more extreme rainfall patterns on ANPP via the use of rainout shelters and paired this experimental manipulation with an investigation of long-term data for ANPP and precipitation. Experimental plots (n = 15) received the long-term (30-year) mean growing season precipitation quantity; however, this amount was distributed as 12, six, or four events applied manually according to seasonal patterns for May–September. The long-term mean (1940–2005) number of rain events in this shortgrass steppe was 14 events, with a minimum of nine events in years of average precipitation. Thus, our experimental treatments pushed this system beyond its recent historical range of variability. Plots receiving fewer, but larger rain events had the highest rates of ANPP (184 ± 38 g m−2), compared to plots receiving more frequent rainfall (105 ± 24 g m−2). ANPP in all experimental plots was greater than long-term mean ANPP for this system (97 g m−2), which may be explained in part by the more even distribution of applied rain events. Soil moisture data indicated that larger events led to greater soil water content and likely permitted moisture penetration to deeper in the soil profile. These results indicate that semi-arid grasslands are capable of responding immediately and substantially to forecast shifts to more extreme precipitation patterns.  相似文献   

12.
Structural aspects of the shortgrass steppe plant community, functional groups, and species populations were examined in response to long-term heavy grazing and exclosure from grazing, contiguous wet or dry years, and an environmental gradient of topography. Of the three factors, relatively greater differences in community similarity were observed between catena positions, particularly on the ungrazed treatments. Grazing was intermediate between catena position and short-term weather in shaping plant community structure. Grazed treatments and ridgetops had a less variable species composition through fluctuations in weather.An increase with grazing of the dominant, heavily grazed species was observed. Basal cover and density of total species was also greater on grazed sites. The more uniform grazing lawn structure of the grazed plant communities had an influence on segregation of plant populations along topographical gradients. Segregation was less on grazed catenas, but diversity and the abundance of introduced and opportunistic-colonizer species was also less.Although the shortgrass steppe community was relatively invariant, less abundant species were dynamic and interactions occurred with respect to grazing, weather, and catena position. The effects of grazing may be mitigated by favorable growing seasons but magnified in unfavorable years in populations that are adapted to favorable sites. Grazing can be considered a disturbance at the level of the individual but it may or may not be a disturbance at the level of the population, and it is not a disturbance at the level of the community in this particular grassland.  相似文献   

13.
Xi  Nianxun  Zhu  Bi-Ru  Zhang  Da-Yong 《Plant and Soil》2017,412(1-2):267-281

Aims

The uptake and tolerance of antimonite [Sb(III)] and antimonate [Sb(V)] were investigated in two populations of Achillea wilhelmsii, one from strongly Sb-enriched mine soil, the other from uncontaminated soil, in comparison with non-metallicolous Silene vulgaris and Thlaspi arvense.

Methods

Tolerance was assessed from root elongation and biomass accumulation after exposure to a series of concentrations of Sb(III) or Sb(V) in hydroponics.

Results

For all the species Sb(III) was more toxic than Sb(V). S. vulgaris was the most Sb(III)-tolerant species, and A. wilhelmsii the most Sb(V)-tolerant one. There were no considerable interspecific differences regarding the root and shoot Sb concentrations. Sb(III) and Sb(V) tolerance and accumulation were not different between the metallicolous and the non-metallicolous A. wilhelmsii populations. Sb(III) uptake was partly inhibited by silicon. Sb(V) uptake was strongly inhibited by chloride.

Conclusions

There is uncorrelated variation among species in Sb(V) and Sb(III) tolerance, showing that plants sequester Sb(V) and Sb(III) in different ways. Sb(V) seems to be taken up via monovalent anion channels, and Sb(III) via silicon transporters, at least in part. The relatively high Sb(V) tolerance in A. wilhelmsii seems to be a species-wide property, rather than a product of local adaptation to Sb-enriched soil.
  相似文献   

14.
Accurate estimation of radiation use efficiency (RUE) is essential in modeling plant productivity, but little information on RUE is available for dry grassland. To quantify the RUE, aboveground biomass (AGB) and photosynthetically active radiation intercepted by plants (IPAR) were measured under different conditions of soil water and air temperature in a Mongolian field for 2 years. A wide range of RUE (0.23–1.06 g AGB/MJ IPAR) was found in negative association with variations in soil water and low temperature stresses. Compared with the temperature stress, the water stress was a strong down-regulator on RUE, verifying that drought is the major concern on radiation utilization in the study area. The maximum RUE was then found to be 2.34±0.16 g AGB/MJ IPAR by excluding the effects of water and temperature stresses. This study is one of the few assessments on RUE for natural grasslands under various levels of seasonally varying water and temperature conditions.  相似文献   

15.
Litterfall and fine root production is a major pathway for carbon and nutrient cycling in forest ecosystems. We investigated leaf litterfall, fine-root mass, production and turnover rate in the upper soil (0–30 cm) under four major tree species (Leucaena leucocephala, Acacia nilotica, Azadirachta indica, Prosopis juliflora) of the semi-arid region of India. All the four tree species showed an unimodal peak of leaf litterfall with distinct seasonality. Leucaena leucocephala and Acacia nilotica had maximum leaf litterfall between September and December while Azadirachta indica and Prosopis juliflora shed most of their leaves between February and May. Annual leaf litterfall of the four species ranged from 3.3 Mg ha?1 (Leucaena leucocephala) to 8.1 Mg ha?1 (Prosopis juliflora). Marked seasonal variations in amount of fine root biomass were observed in all the four tree species. Fine root production was maximum in Prosopis juliflora (171 g m?2 y?1) followed by Azadirachta indica (169 g m?2 y?1), Acacia nilotica (106 g m?2 y?1) and Leucaena leucocephala (79 g m?2 y?1). Fine root biomass showed a seasonal peak after the rainy season but fell to its lowest value during the winter and dry summer season. Fine root turnover rate ranged from 0.56 to 0.97 y?1 and followed the order Azadirachta indica > Leucaena leucocephala > Prosopis juliflora > Acacia nilotica. The results of this study demonstrated that Prosopis juliflora and Azadirachta indica had greater capability for maintaining site productivity as evidenced from greater leaf litterfall and fine root production.  相似文献   

16.
Xia J  Wan S 《PloS one》2012,7(2):e32088

Background

The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems.

Methodology/Principal Findings

A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration.

Conclusions/Significance

These plants'' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands.  相似文献   

17.
Although plant spatial patterns strongly influence community-structuring processes, few empirical studies have addressed pattern effects on perennial community dynamics. We tested the effects of community- and neighborhood-scale patterns in experimental semi-arid grassland communities comprising the stronger competitor crested wheatgrass (Agropyron cristatum) and the weaker competitor Snake River wheatgrass (Elymus wawawaiensis). Treatments consisted of community-scale patterns (Poisson random, regular, and aggregated) and neighborhood-scale patterns (Poisson random, small, and large aggregations) applied to 6.25-m2 plots, with aggregations generated through simulated realizations of Neyman-Scott cluster processes. Two years of data were collected on aboveground biomass of both species, and variability in light (photosynthetically active radiation; PAR) was also quantified. We found that plant performance was strongly affected by community-scale spatial patterns and time, with additional effects of neighborhood-scale pattern in certain treatments. Mean biomass and relative growth rates of both species were highest in plots with community-scale regularity and random neighborhoods, suggesting a strong effect of pattern on competition that was magnified for the weaker competitor E. wawawaiensis, especially in the second year. There were also significant effects of treatment and time on variability of PAR, supporting past research on the importance of canopy patterns for light distribution near the soil surface. We observed more variable light environments in plots with community-scale aggregation, and variability also increased in the second year. Our research provides new information on the effects of plant patterns on community dynamics, with particular relevance for semi-arid perennial grasslands.  相似文献   

18.
Compared to continuous grazing (CG), rotational grazing (RG) increases herbage production and thereby the resilience of grasslands to intensive grazing. Results on feed intake and animal performance, however, are contradictory. Hence, the objective of the study was to determine the effects of RG and CG on herbage mass, digestibility of ingested organic matter (dOM), organic matter intake (OMI) and live weight gain (LWG) of sheep in the Inner Mongolian steppe, China. During June–September 2005–2008, two 2-ha plots were used for each grazing system. In RG, plots were divided into four 0.5-ha paddocks that were grazed for 10 days each at a moderate stocking rate. Instead, CG sheep grazed the whole plots throughout the entire grazing season. At the beginning of every month, dOM was estimated from faecal crude protein concentration. Faeces excretion was determined using titanium dioxide in six sheep per plot. The animals were weighed every month to determine their LWG. Across the years, herbage mass did not differ between systems (p = 0.820). However, dOM, OMI and LWG were lower in RG than in CG (p ≤ 0.005). Thus, our study showed that RG does not improve herbage growth, feed intake and performance of sheep and suggests that stocking rates rather than management system determine the ecological sustainability of pastoral livestock systems in semi-arid environments.  相似文献   

19.

Background and aims

Previous studies have demonstrated positive net primary production effects with increased nitrogen (N) and water availability in Inner Mongolian semi-arid grasslands. However, the responses of soil carbon (C) and N concentrations and soil enzyme activities as indicators of impacts of long-term N (urea) and water addition are still unclear. We tested the effect of 7 years of a N and water addition experiment on soil C, N, and specific soil-bound enzymes in a semi-arid grassland of Inner Mongolia.

Methods

We determined concentrations of soil organic carbon (SOC) and soil total nitrogen (TN) in both the 0–10 and 10–20 cm soil layers. Concentrations of labile carbon (LC) and inorganic nitrogen (nitrate and ammonium), and soil pH were measured. Additionally, soil dehydrogenase (DHA), β-glucosidase (BG) and acid and alkaline phosphomonoesterase (PME) enzyme activities were determined in the 0–10 cm soil layer.

Results

SOC concentration in the 0–10 cm soil layer showed no response to N addition or N plus water addition, but increased with water addition alone by 0.3–15.7 %. N addition significantly increased nitrate by 46.0–138.4 % and ammonium by 19.0–73.3 % in the 0–10 cm soil layer, whereas water addition did not affect them. The activities of DHA and alkaline PME enzymes, as well as soil pH, in the 0–10 cm layer decreased with N addition, however water addition alone caused these enzyme activities to increase. Unlike the surface soil (0–10 cm), the lower soil layer (10–20 cm), was responsive to N and water addition in that SOC and TN concentrations decreased with N addition and increased with water addition.

Conclusions

The accumulation of SOC and TN in N and water addition plots may be caused by the input of plant biomass exceeding SOC decomposition. Decrease in microbial activity, derived from decreased DHA and alkaline PME activities might result from suppression effects of lower pH and decreased microbial N supply. Water availability is proved to be more important than N availability for soil C and N accumulation in this semi-arid grassland.  相似文献   

20.
Effects of drought and N-fertilization on N cycling in two grassland soils   总被引:1,自引:0,他引:1  
Changes in frequency and intensity of drought events are anticipated in many areas of the world. In pasture, drought effects on soil nitrogen (N) cycling are spatially and temporally heterogeneous due to N redistribution by grazers. We studied soil N cycling responses to simulated summer drought and N deposition by grazers in a 3-year field experiment replicated in two grasslands differing in climate and management. Cattle urine and NH4NO3 application increased soil NH4 + and NO3 ? concentrations, and more so under drought due to reduced plant uptake and reduced nitrification and denitrification. Drought effects were, however, reflected to a minor extent only in potential nitrification, denitrifying enzyme activity (DEA), and the abundance of functional genes characteristic of nitrifying (bacterial and archaeal amoA) and denitrifying (narG, nirS, nirK, nosZ) micro-organisms. N2O emissions, however, were much reduced under drought, suggesting that this effect was driven by environmental limitations rather than by changes in the activity potential or the size of the respective microbial communities. Cattle urine stimulated nitrification and, to a lesser extent, also DEA, but more so in the absence of drought. In contrast, NH4NO3 reduced the activity of nitrifiers and denitrifiers due to top-soil acidification. In summary, our data demonstrate that complex interactions between drought, mineral N availability, soil acidification, and plant nutrient uptake control soil N cycling and associated N2O emissions. These interactive effects differed between processes of the soil N cycle, suggesting that the spatial heterogeneity in pastures needs to be taken into account when predicting changes in N cycling and associated N2O emissions in a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号