首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Nitric oxide (NO) plays an important role in mediating many aspects of inflammatory responses. NO is an effector molecule of cellular injury, and can act as an anti-oxidant. It can modulate the release of various inflammatory mediators from a wide range of cells participating in inflammatory responses (e.g., leukocytes, macrophages, mast cells, endothelial cells, and platelets). It can modulate blood flow, adhesion of leukocytes to the vascular endothelium and the activity of numerous enzymes, all of which can have an impact on inflammatory responses. In recent years, NO-releasing drugs have been developed, usually as derivatives of other drugs, which exhibit very powerful anti-inflammatory effects.  相似文献   

3.
Generation of nitric oxide (NO?) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO? affects each one uniquely. Whereas NO? directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO?. Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO? production, can also be activated by NO?. The production of NO? and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis.  相似文献   

4.
5.
6.
Nitric oxide and the regulation of gene expression   总被引:24,自引:0,他引:24  
  相似文献   

7.
8.
Nitric oxide (NO) is known as a gaseous messenger in the nervous system. It plays a role in synaptic plasticity, but also in development and regeneration of nervous systems. We have studied the function of NO and its signaling cascade via cyclic GMP in the locust embryo. Its developing nervous system is well suited for pharmacological manipulations in tissue culture. The components of this signaling pathway are localized by histochemical and immunofluorescence techniques. We have analyzed cellular mechanisms of NO action in three examples: 1. in the peripheral nervous system during antennal pioneer axon outgrowth, 2. in the enteric nervous system during migration of neurons forming the midgut nerve plexus, and 3. in the central nervous system during axonal regeneration of serotonergic neurons after axotomy. In each case, internally released NO or NO-induced cGMP synthesis act as permissive signals for the developmental process. Carbon monoxide (CO), as a second gaseous messenger, modulates enteric neuron migration antagonistic to NO.  相似文献   

9.
10.
11.
Nitric oxide: a non-traditional regulator of plant growth.   总被引:15,自引:0,他引:15  
  相似文献   

12.
The published data on the mechanisms and regulation of active and passive Ca2+ transport in the myometrium have been analyzed. Particular attention is paid to the cGMP-dependent and independent pathways of action of nitric oxide or its derivatives on intracellular Ca2+ homeostasis of uterine smooth muscle and its contractile activity. Information on the effect of nitric oxide on Ca2+ -transport systems of other types of smooth muscles is provided in a comparative aspect. Based on own experimental results and literature data a scheme of NO action in the myometrium is suggested in which nitric oxide or its derivatives cause Ca2+ -dependent polarization of the sarcolemma. In accordance with our results, this effect may be based on the increase of sarcolemma Ca2+ permeability under the influence of NO or its derivatives and the stimulation of at least the initial passive transport of the cation in the myocytes mediated by dihydropyridine-sensitive channels. Additional factors that contribute to the polarization of the membrane are the increase of protons transport from the muscle cells and stimulation of Na+, K+ -ATPase. Acting on the sarcoplasmic reticulum, nitrosactive compounds activate the inclusion of calcium in this compartment and inhibit Ca2+ -induced release of the cation. The latter effects are able to provide compensation for NO-induced Ca2+ increase in myocytes and supress the electromechanical coupling at Ca2+ release from the reticulum. NO-derivates also inhibit a key link in the smooth muscle contractile act--the formation of the Ca2+ -calmodulin complex.  相似文献   

13.
Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis   总被引:7,自引:0,他引:7  
Apoptosis of inflammatory cells is a critical event in the resolution of inflammation, as failure to undergo this form of cell death leads to increased tissue damage and exacerbation of the inflammatory response. Many factors are able to influence the rate of apoptosis in neutrophils, eosinophils, monocytes and macrophages. Among these is the signalling molecule nitric oxide (NO), which possesses both anti- and proapoptotic properties, depending on the concentration and flux of NO, and also the source from which NO is derived. This review summarises the differential effects of NO on inflammatory cell apoptosis and outlines potential mechanisms that have been proposed to explain such actions.  相似文献   

14.
15.
16.
17.
In the present study, nitric oxide synthase/nitric oxide (NOS/NO) status was tested in the host plants infected with fungi, bacteria and virus. In each case cytosolic nitric oxide synthase (Cyt-NOS) of diseased plants was inhibited and inhibition was competitive in nature in respect to l-arginine, the substrate for the enzymic activity. Elevation of host nitric oxide (NO) level before infection using nitric oxide (NO) donor protected disease initiation significantly. The nature of enzyme kinetics and the manner of disease protection by nitric oxide donor (NO-donor) was similar in all the three cases of infection. It was concluded that nitric oxide was a common antipathogenic factor of plants.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号