首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer ribonucleic acid (tRNA) nucleotidyltransferase was studied after making cells permeable to macromolecules by treatment with toluene. The conditions of toluene treatment necessary for obtaining maximal activity were defined. Toluene treatment was most efficient when carried out for 5 min at 37 C at pH 9.0 on log-phase cells. No activity could be detected if cells were treated at 0 C, or in the presence of MgCl2, or if the cells were in the stationary phase of growth. However, inclusion of lysozyme and ethylenediaminetetraacetic acid during the toluene treatment did render stationary phase cells permeable. The properties of tRNA nucleotidyltransferase from toluene-treated cells were essentially identical to those of purified enzyme with regard to pH optimum, specificity for nucleoside triphosphates and tRNA, and apparent Km values for substrates. In addition to tRNA nucleotidyltransferase, a variety of other enzymes which incorporate adenosine 5′-triphosphate into acid-precipitable material could also be detected in toluene-treated cells. Centrifugation of cells treated with toluene revealed that tRNA nucleotidyltransferase leaked out of cells, whereas other activities remained associated with the cell pellets. Chromatography of the material extracted from toluene-treated cells on Sephadex G-100 indicated that toluene treatment selectively extracts lower molecular weight proteins. The usefulness of such a procedure as an initial step in purification of such enzymes, and its application to tRNA nucleotidyltransferase, is discussed.  相似文献   

2.
Initiation of deoxyribonucleic acid replication is absent in Bacillus subtilis cells made permeable by toluene. The absence of initiation may be (i) a temporary removal of toluene, or (ii) irreversibly lost due to damage by toluene treatment to a cellular structure or a process required for chromosome initiation. Washed cells, previously treated with toluene and subsequently washed free of detectable amounts of toluene, have the same characteristics of toluene-treated cells in which toluene is not removed. The continued absence of initiation in the washed cells indicates a permanent loss of initiation in cells treated with toluene. Protein synthesis is also inhibited irreversibly by toluene treatment, indicating damage to translation as a possible mechanism for loss of initiation of toluene-treated cells.  相似文献   

3.
Macromolecular synthesis was studied in individual liver cells rendered permeable to macromolecules and charged molecules by treatment with toluene. Toluene-treated cells were compared to intact cells with regard to their ability to synthesize protein, RNA, and DNA. The permeable cells catalyzed the incorporation of amino acids into protein in a system which was sensitive to cycloheximide. Maximal incorporation required the addition of tRNA, ATP, GTP, an energy source and various cations. RNA synthesis also took place in these cells and was inhibited by actinomycin D. Maximal incorporation required all four ribonucleoside triphosphates, an energy-generating system, and Mn2+, K+, and F?. The toluene-treated cells also were active for DNA synthesis when Ca2+ was present to induce endonucleolytic cleavage of the endogenous DNA. For maximal synthesis, all four deoxyribonucleoside triphosphates, ATP, K+, Mg2+, polyamines, and mercaptoethanol were required. These studies serve to emphasize the potential usefulness of toluene treatment for studying biosynthetic processes in mammalian cells.  相似文献   

4.
The relationship between toluene concentration and the rate of leakage of solutes from toluene-treated roots and leaves of Sorghum bicolor, L. Moench, was studied to determine the effect of toluene on plant cell membranes. A threshold concentration of 0.2% toluene was needed to induce leakage. Maximal leakage rates were obtained with 0.5% toluene. Low molecular weight solutes, such as amino acids, sugars, and inorganic ions, leaked from treated tissue, while macromolecules, such as protein were retained. The rates at which the low molecular weight solutes diffused from treated cells decreased with increasing molecular weight. At 25°C, treatment of roots and leaves with 0.5% toluene resulted in the quasi-quantitative leakage of solutes within 180 minutes. At 1°C, roots and leaves differed in their response to toluene. The rates of leakage from roots at 1°C were much lower and the total amounts much smaller than at 25°C, while in leaves the difference between the two temperatures was very small.  相似文献   

5.
We investigated the synthesis of DNA in toluene-treated cells prepared from Escherichia coli infected with bacteriophage T4. If the phage carry certain rII deletion mutations, those which extend into the nearby D2a region, the following results are obtained: (i) phage DNA synthesis occurs unless the phage carries certain DNA-negative mutations; and (ii) host DNA synthesis occurs even though the phage infection has already resulted in the cessation of host DNA synthesis in vivo. The latter result indicates that the phage-induced cessation of host DNA synthesis is not due to an irreversible inactivation of an essential component of the replication apparatus. If the phage are D2a(+), host DNA synthesis in toluene-treated infected cells is markedly reduced; phage DNA synthesis is probably also reduced somewhat. These D2a effects, considered along with our earlier work, suggest that a D2a-controlled nuclease, specific for cytosine-containing DNA, is active in toluene-treated cells.  相似文献   

6.
The effect of novobiocin on macromolecule synthesis was investigated in Escherichia coli cells permeabilized by treatment with toluene or 2 m-sucrose. It was found that (1) semiconservative DNA replication is strongly and immediately inhibited and (2) ATP-independent DNA repair as well as RNA and protein synthesis are not affected.  相似文献   

7.
Diaminopimelyl-d-alanyl carboxypeptidase (carboxypeptidase II) is most active at the time of division, whether measured in toluene-treated cells of Escherichia coli K-12 strain D11-1, fractionated by size, or in toluene-treated cells of the temperature-sensitive division mutant, BUG 6 (B. D. Beck and J. T. Park, 1976). The present investigation has now shown that, under conditions that permit division, the increased carboxypeptidase II activity in toluenetreated cells of BUG 6 is probably not due to protein synthesis. Although dividing cells are more permeable than nondividing cells, permeability differences are not sufficient to account for the changes in carboxypeptidase II activity. Thus, in the toluene-treated nondividing cells, carboxypeptidase II is present, but its activity is masked, which suggests the presence of an inhibitor. Another striking difference between nondividing and dividing cells is that carboxypeptidase II is much more readily released from dividing cells by both tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid and toluene treatment. Carboxypeptidase II was partially purified and found to be an 86,000-molecular-weight protein consisting of two 43,000-molecular-weight polypeptides. Tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid treatment of nondividing cells releases less than 10% of the carboxypeptidase II and other periplasmic proteins that are releasable from dividing cells.  相似文献   

8.
The effect of diadenosine 5', 5"'-P1,P4-tetraphosphate (Ap4A) on the time course and acceptors of poly(ADP-ribose) synthesis was studied in undamaged and N-methyl-N'-nitro-N-nitrosoguanidine-treated human lymphocytes. Analysis of protein acceptors of poly(ADP-ribose) revealed that treatment with Ap4A stimulated ADP-ribosylation of bands at molecular weights of 96,000, 79,000, and 62,000. Pulse-chase studies showed that these bands were produced as a result of an effect of Ap4A on the processing of ADP-ribosylated proteins rather than on the synthesis of newly ADP-ribosylated proteins. By incubating permeabilized cells in the absence or presence of Ap4A and purified poly(ADP-ribose) polymerase auto-ADP-ribosylated with [32P]NAD+, we showed that the Mr = 96,000, 79,000, and 62,000 bands were derivatives of the prelabeled enzyme. Our results indicate that normal human lymphocytes process auto-ADP-ribosylated poly(ADP-ribose) polymerase to specific lower molecular weight products and that this processing is stimulated by Ap4A.  相似文献   

9.
K Sidik  M J Smerdon 《Biochemistry》1990,29(32):7501-7511
We have examined the structure of newly repaired regions of chromatin in intact and permeabilized human cells following exposure to bleomycin (BLM). The average repair patch size (in permeabilized cells) was six to nine bases, following doses of 1-25 micrograms/mL BLM, and greater than 80% of the total repair synthesis was resistant to aphidicolin. In both intact and permeabilized cells, nascent repair patches were initially very sensitive to staphylococcal nuclease, analogous to repair induced by "long patch" agents, and are nearly absent from isolated nucleosome core DNA. Unlike long patch repair, however, the loss of nuclease sensitivity during subsequent chase periods was very slow in intact cells, or in permeabilized cells treated with a low dose of BLM (1 microgram/mL), and was abolished by treatment with hydroxyurea (HU) or aphidicolin (APC). The rate of repair patch ligation did not correlate with this slow rate of chromatin rearrangement since greater than 95% of the patches were ligated within 6 h after incorporation (even in the presence of HU or APC). In permeabilized cells, repair patches induced by either 5 or 25 micrograms/mL BLM, where significant levels of strand breaks occur in compact regions of chromatin, lost the enhanced nuclease sensitivity at a rate similar to that observed following long patch repair. This rapid rate of rearrangement was not affected by APC. These results indicate that short patch repair in linker regions of nucleosomes, and/or "open" regions of chromatin, involves much less nucleosome rearrangement than long patch repair or short patch repair in condensed chromatin domains.  相似文献   

10.
The proliferation and differentiation signals of myelogeneous U937 cells are provided by extracellular stimuli, such as lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA). In a DNA-native-polyacrylamide gel assay system, we demonstrated that a particular nuclease activity is expressed in PMA-stimulated U937 cells and secreted into the culture medium. The nuclease activity was induced in U937 cells by LPS treatment, while the secretion of the enzyme was undetected in the culture medium. Therefore, it is likely that the expression and secretion of the particular nuclease in U937 cells are controlled by extracellular stimulations, such as PMA and LPS treatment.  相似文献   

11.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

12.
Vicia faba root cells contain several nucleolytic activities: phosphomonoesterase and phosphodiesterase (which however were not studied in details), one nuclease and four ribonucleases. These results were obtained by separating the extracted proteins into anionic and cationic species by chromatography on CM-cellulose at pH 5.5 and analysing each kind of proteins. Anionic species were subjected to chromatography on DEAE-cellulose which lead to isolation of one nuclease (A1) and two RNAases (A2, A3), the properties of which were studied. It was shown that the RNAases pH optima are near 6; A2 is more thermolabile than A3; both are endonucleases unable to attack double-stranded structure; studies with homopolymers, i.e. poly(A), poly(I), poly(C), poly(U), showed that their base specificities were analogous to that of already known plant RNAases. The cationic proteins, analysed with CM-cellulose, contain two RNAases (C1, C2). The pH optima were near 6 and 7, respectively; C1 is much more thermolabile than C2; both were endonucleases inactive on double-stranded structures. C1 and C2 hydrolysed poly(C) and poly(U) but not poly(A) and poly(U).  相似文献   

13.
D-Alanyl-lipoteichoic acid (D-alanyl-LTA) from Lactobacillus casei contains a poly(glycerol phosphate) moiety that is selectively acylated with D-alanine ester residues. To characterize further the mechanism of D-alanine substitution, intermediates were sought that participate in the assembly of this LTA. From the incorporation system utilizing either toluene-treated cells or a combination of membrane fragments and supernatant fraction, a series of membrane-associated D-[14C]alanyl-lipophilic compounds was found. The assay of these compounds depended on their extractability into monophasic chloroform-methanol-water (0.8:3.2:1.0, vol/vol/vol) and subsequent partitioning into chloroform. Four lines of evidence suggested that the D-alanyl-lipophilic compounds are intermediates in the synthesis of D-alanyl-LTA. First, partial degradation of the poly(glycerol phosphate) moiety of D-alanyl-LTA by phosphodiesterase II/phosphatase from Aspergillus niger generated a series of D-alanyl-lipophilic compounds similar to those extracted from the toluene-treated cells during the incorporation of D-alanine. Second, enzymatic degradation of the D-alanyl-lipophilic compounds by the above procedure gave D-alanyl-glycerol, the same degradation product obtained from D-alanyl-LTA. Third, the incorporation of D-alanine into these compounds required the same components as the incorporation of D-alanine into membrane-associated D-alanyl-LTA. Fourth, the phosphate-induced loss of D-[14C]alanine-labeled lipophilic compounds could be correlated with the stimulation of phosphatidylglycerol synthesis in the presence of excess phosphate. We interpreted these experiments to indicate that the D-alanyl-lipophilic compounds are D-alanyl-LTA with short polymer chains and are most likely intermediates in the assembly of the completed polymer, D-alanyl-LTA.  相似文献   

14.
Two glucose transport systems in Bacillus licheniformis.   总被引:3,自引:2,他引:1       下载免费PDF全文
Bacillus licheniformis NCIB 6346 showed active accumulation of glucose which was inhibited by agents which affect the transmembrane proton gradient. Phosphotransferase (PTS) activity, identified as phosphoenolpyruvate-dependent phosphorylation of glucose, was found in cell extracts but could not be demonstrated in cells permeabilized with toluene when assays were conducted at pH 6.6. The same was true for mannitol and fructose phosphotransferase activities. Cells grown on fructose accumulated glucose at a slower rate than glucose-grown cells, and extracts prepared from them did not contain glucose PTS activity. Examination of the effects of analogs on glucose uptake and phosphorylation showed that 2-deoxyglucose was not a PTS substrate, but did markedly inhibit glucose uptake, with stronger inhibition in cells grown on fructose. Glucose accumulation by whole cells grown on glucose became less sensitive to the uncoupler tetrachlorosalicylanilide (TCS) as the pH was raised from 6.6 to 8.0, while in fructose-grown cells TCS was equally effective across this pH range. PTS activity was exhibited by toluene-treated cells at pH 7.5 and above, although the system itself in extracts was not affected by pH in the range of 5.0 to 8.0. The results are consistent with the presence of two glucose transport systems, one a PTS and the other operating by an alternative mechanisms, and suggest that the PTS in B. licheniformis may be regulated in a pH-dependent manner.  相似文献   

15.
Javed Iqbal 《Planta》1977,134(1):1-3
The vegetative prothalli (1–3 weeks old) of Anemia were incubated for 24 h in [14C]adenine. The RNA was phenol extracted from whole cells and the poly (A) sequences were isolated by nuclease digestion followed by poly (U)-sepharose chromatography. About 2–3% of the total radioactivity was retained on the column. The base composition of the nuclease resistant RNA was: C, 1.4; G, 3.6; A, 93.3; and U, 1.7. It is concluded that Anemia RNA contains poly adenylate sequences.Part of a post-doctoral work. Fellowship awarded by Alexander von Humboldt-Stiftung, Federal Republic of Germany  相似文献   

16.
Escherichia coli mutants with temperature-sensitive (ts) mutations in dnaX and dnaY genes have been isolated. Based on transduction by phage P1, dnaX and Y have been mapped at minutes 10.4--10.5 and 12.1, respectively, in the sequence dnaX purE dnaY. Both dna Xts36 and Yts10 are recessive to wild-type alleles present on episomes. F13 carries both dnaX+ and Y+; the shorter F210 carries dnaY+, but not X+. Lambda tranducing phages that carry dnaX+ or Y+ have been isolated, and hybrid plasmids of Col E1 and E. coli DNA from the Clarke and Carbon (1976) collection also carry portions of the dnaX purE dnaY region. Results obtained with the lambda transducing phages and the hybrid plasmids suggest that dnaX is a different gene from the previously characterized dnaZ gene, which is also near minute 10.5--The dnaXts36 mutant, after a shift to 42 degrees, stopped DNA synthesis gradually, and the total amount of DNA increased two-fold. When this mutant was shifted to 44 degrees, the rate of DNA synthesis dropped immediately and the final increment of DNA was only 10% of the initial amount. Replicative DNA synthesis in toluene-treated cells was completely inhibited at 42 degrees and was partially inhibited even at 30 degrees.--When the dnaYts10 mutant was shifted to 42 degrees, DNA synthesis gradually stopped, and the amount of DNA increased 3.6-fold. At 44 degrees, residual DNA synthesis amounted to a two-fold increase. Replicative DNA synthesis in vitro in toluene-treated cells was inactivated after 20 minutes at 42 degrees or by "preincubation" of cells at 42 degrees before toluene treatment.--The dnaX and dnaY products probably function in polymerization of DNA, although participation also in initiation cannot be excluded.  相似文献   

17.
A hyperthermic shift in the hyperchromicity curve of thermally denatured swine aortic-smooth-muscle-cell chromatin solubilized by digestion of nuclei with micrococcal nuclease was observed after the chromatin was incubated under conditions to allow poly-(ADP-ribose) synthesis by the endogenous poly(ADP-ribose) polymerase. When the order of solubilization and poly(ADP-ribosyl)ation was reversed, a smaller proportion of the solubilized chromatin exhibited greater thermal stability. Nuclease digestion of nuclei preincubated for poly(ADP-ribose) synthesis revealed no difference in kinetics of digestion or fragment size distribution compared to that of control nuclei. Poly(ADP-ribose) synthesis in these nuclei was proportionately greater in the chromatin fraction most resistant to solubilization by micrococcal nuclease treatment.  相似文献   

18.
Summary The production of sorbitol and gluconic acid by toluene-treated, permeabilized cells of Zymomonas mobilis has been evaluated. From a 60% total sugar solution (300 g/l glucose and 300 g/l fructose), a sorbitol concentration of 290 g/l and a gluconic acid concentration of 283 g/l were achieved after 15 h in a batch process using free toluene-treated cells. A continuous process with immobilized cells was developed and only a small loss of enzyme activity (less than 5%) was evident after 120 h. With a strongly basic anion exchange resin and an eluent of 0.11 M Na2B4O7/0.11 M H3BO3, good separation of sorbitol and gluconic acid was achieved.  相似文献   

19.
Nucleoprotein structures at the SV40 GC-box and adjacent AT-rich region have been probed by nucleases in permeabilized cells at nucleotide level resolution. The patterns of nuclease protection and hypersensitivity in these permeabilized cells that allow initiation of RNA and DNA synthesis are quite different from those observed in isolated nuclei that are inactive. Whereas simple DNA protection by factors is found in nuclei, the pattern in permeabilized cells includes very strong nuclease hypersensitive sites. Their arrangement suggests that the region exists as a higher order nucleoprotein complex in vivo, which is disturbed during the preparation of nuclei. The pattern is also found to be disturbed in permeabilized cells when T-antigen is inactivated by temperature-sensitive mutation. Since T-antigen origin binding sites and the GC-box region have been shown previously to interact functionally, the existence of a higher order structure involving both components provides a likely physical basis for the functional interaction of separate control elements.  相似文献   

20.
The effect of toluene on Escherichia coli has been examined. In the presence of Mg2+, toluene removes very little protein, phospholipid, or lipopolysacharide from E. coli. In the absence of Mg2+, or in the presence of EDTA, toluene removes considerably more cell material, including several specific cytoplasmic proteins such as malate dehydrogenase (EC 1.1.1.37). In contrast, glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and glutamate dehydrogenase (EC 1.4.1.4) are not released at all under the same conditions. Cells treated with toluene in the presence of Mg2+ remain relatively impermeable to pyridne nucleotides, while cells treated with toluene in the presence of EDTA become permeable to these compounds. Freeze-fracture electron microscopy shows that toluene causes considerable damage to the cytoplasmic membrane, while the outer membrane remains relatively intact. These results indicate that the permeability characteristics of toluene-treated cells depend at least partly on the state of the outer membrane after the toluene treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号