首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-6 (IL-6) is produced by neurons, astrocytes, and microglia, and elevated levels of IL-6 within the CNS have been documented in multiple neurological disorders including Alzheimer's disease, stroke, epilepsy, attention deficit disorder, cerebral palsy, and multiple sclerosis. Here, we sought to understand how IL-6 regulates microglial signal transduction and their immune properties. Using highly enriched cultures of neonatal murine microglia we show that IL-6 alone has direct effects on microglia as it activates STAT3 and extracellular signal-regulated kinase pathways in a time- and dose-dependent fashion and it enhances interferon-gamma (IFNγ)-stimulated IL-12 secretion. However, other immune properties were only weakly modulated by IL-6 when administered without the soluble IL-6 receptor (sIL-6R). For instance, IFNγ-induced expression of the co-stimulatory molecule, CD40 was dependent on sIL-6R administration. IL-6 with or without sIL-6R did not affect major histocompatability complex class II expression. In granulocyte–macrophage colony-stimulating factor (GMCSF)-induced dendritic cell-like microglia, IL-6/sIL-6R and IFNγ stimulated an even greater increase in CD40 expression compared with primary microglia. Altogether, our results demonstrate that microglial responses to IL-6 are not simple in that the effects of IL-6 are context-dependent. In particular, the presence or absence of sIL-6R, IFNγ or GMCSF will alter the type and amplitude of their response.  相似文献   

2.
CD40 is a type I membrane-bound molecule belonging to the TNFR superfamily that is expressed on various immune cells including macrophages and microglia. The aberrant expression of CD40 is involved in the initiation and maintenance of various human diseases including multiple sclerosis, arthritis, atherosclerosis, and Alzheimer's disease. Inhibition of CD40 signaling has been shown to provide a significant beneficial effect in a number of animal models of human diseases including the aforementioned examples. We have previously shown that IFN-gamma induces CD40 expression in macrophages and microglia. IFN-gamma leads to STAT-1alpha activation directly and up-regulation of NF-kappaB activity due to the secretion and subsequent autocrine signaling of TNF-alpha. However, TNF-alpha alone is not capable of inducing CD40 expression in these cells. Suppressor of cytokine signaling 1 protein (SOCS-1) is a cytokine-inducible Src homology 2-containing protein that regulates cytokine receptor signaling by inhibiting STAT-1alpha activation via a specific interaction with activated Janus kinase 2. Given the important role of CD40 in inflammatory events in the CNS as well as other organ systems, it is imperative to understand the molecular mechanisms contributing to both CD40 induction and repression. We show that ectopic expression of SOCS-1 abrogates IFN-gamma-induced CD40 protein expression, mRNA levels, and promoter activity. Additionally, IFN-gamma-induced TNF-alpha secretion, as well as STAT-1alpha and NF-kappaB activation, are inhibited in the presence of SOCS-1. We conclude that SOCS-1 inhibits cytokine-induced CD40 expression by blocking IFN-gamma-mediated STAT-1alpha activation, which also then results in suppression of IFN-gamma-induced TNF-alpha secretion and subsequent NF-kappaB activation.  相似文献   

3.
Neurotropic mouse hepatitis virus (MHV-A59/RSA59) infection in mice induces acute neuroinflammation due to direct neural cell dystrophy, which proceeds with demyelination with or without axonal loss, the pathological hallmarks of human neurological disease, Multiple sclerosis (MS). Recent studies in the RSA59-induced neuroinflammation model of MS showed a protective role of CNS-infiltrating CD4+ T cells compared to their pathogenic role in the autoimmune model. The current study further investigated the molecular nexus between CD4+ T cell-expressed CD40Ligand and microglia/macrophage-expressed CD40 using CD40L-/- mice. Results demonstrate CD40L expression in the CNS is modulated upon RSA59 infection. We show evidence that CD40L-/- mice are more susceptible to RSA59 induced disease due to reduced microglia/macrophage activation and significantly dampened effector CD4+ T recruitment to the CNS on day 10 p.i. Additionally, CD40L-/- mice exhibited severe demyelination mediated by phagocytic microglia/macrophages, axonal loss, and persistent poliomyelitis during chronic infection, indicating CD40-CD40L as host-protective against RSA59-induced demyelination. This suggests a novel target in designing prophylaxis for virus-induced demyelination and axonal degeneration, in contrast to immunosuppression which holds only for autoimmune mechanisms of inflammatory demyelination.  相似文献   

4.
5.
6.
The interaction between CD40 and its cognate ligand, CD40 ligand, is a primary regulator of the peripheral immune response, including modulation of T lymphocyte activation, B lymphocyte differentiation and antibody secretion, and innate immune cell activation, maturation, and survival. Recently, we and others have identified CD40 expression on a variety of CNS cells, including endothelial cells, smooth muscle cells, astroglia and microglia, and have found that, on many of these cells, CD40 expression is enhanced by pro-inflammatory stimuli. Importantly, the CD40–CD40 ligand interaction on microglia triggers a series of intracellular signaling events that are discussed, beginning with Src-family kinase activation and culminating in microglial activation as evidenced by tumor necrosis factor- secretion. Based on the involvement of microglial activation and brain inflammation in Alzheimer's disease pathogenesis, we have investigated co-stimulation of microglia, smooth muscle, and endothelial cells with CD40 ligand in the presence of low doses of freshly solubilized amyloid-β peptides. Data reviewed herein show that CD40 ligand and amyloid-β act synergistically to promote pro-inflammatory responses by these cells, including secretion of interleukin-1β by endothelial cells and tumor necrosis factor- by microglia. As these cytokines have been implicated in neuronal injury, a comprehensive model of pro-inflammatory CD40 ligand and amyloid-β initiated Alzheimer's disease pathogenesis (mediated by multiple CNS cells) is proposed.  相似文献   

7.
8.
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme of the kynurenine pathway of tryptophan metabolism, ultimately leading to production of the excitotoxin quinolinic acid (QUIN) by monocytic cells. In the Tg2576 mouse model of Alzheimer's disease, systemic inflammation induced by lipopolysaccharide leads to an increase in IDO expression and QUIN production in microglia surrounding amyloid plaques. We examined whether the IDO over-expression in microglia could be mediated by brain proinflammatory cytokines induced during the peripheral inflammation using THP-1 cells and peripheral blood mononuclear cells (PBMC) as models for microglia. THP-1 cells pre-treated with 5–25 μM amyloid β peptide (Aβ) (1–42) but not with Aβ (1–40) or Aβ (25–35) became an activated state as indicated by their morphological changes and enhanced adhesiveness. IDO expression was only slightly increased in the reactive cells but strongly enhanced following treatment with proinflammatory cytokine interferon-γ (IFN-γ) but not with interleukin-1β, tumor necrosis factor-α, or interleukin-6 at 100 U/mL. The concomitant addition of Aβ (1–42) with IFN-γ was totally ineffective, indicating that Aβ pre-treatment is prerequisite for a high IDO expression. The priming effect of Aβ (1–42) for the IDO induction was also observed for PBMC. These findings suggest that IFN-γ induces IDO over-expression in the primed microglia surrounding amyloid plaques.  相似文献   

9.
Costimulation between T cells and APCs is required for adaptive immune responses. CD40, an important costimulatory molecule, is expressed on a variety of cell types, including macrophages and microglia. The aberrant expression of CD40 is implicated in diseases including multiple sclerosis, rheumatoid arthritis, and Alzheimer's disease, and inhibition of CD40 signaling has beneficial effects in a number of animal models of autoimmune diseases. In this study, we discovered that IL-10, a cytokine with anti-inflammatory properties, inhibits LPS-induced CD40 gene expression. We previously demonstrated that LPS induction of CD40 in macrophages/microglia involves both NF-kappaB activation and LPS-induced production of IFN-beta, which subsequently activates STAT-1alpha. IL-10 inhibits LPS-induced IFN-beta gene expression and subsequent STAT-1alpha activation, but does not affect NF-kappaB activation. Our results also demonstrate that IL-10 inhibits LPS-induced recruitment of STAT-1alpha, RNA polymerase II, and the coactivators CREB binding protein and p300 to the CD40 promoter, as well as inhibiting permissive histone H3 acetylation (AcH3). IL-10 and LPS synergize to induce suppressor of cytokine signaling (SOCS)-3 gene expression in macrophages and microglia. Ectopic expression of SOCS-3 attenuates LPS-induced STAT activation, and inhibits LPS-induced CD40 gene expression, comparable to that seen by IL-10. These results indicate that SOCS-3 plays an important role in the negative regulation of LPS-induced CD40 gene expression by IL-10.  相似文献   

10.
Microglia are resident central nervous system (CNS) macrophages. Theiler's murine encephalomyelitis virus (TMEV) infection of SJL/J mice causes persistent infection of CNS microglia, leading to the development of a chronic-progressive CD4(+) T-cell-mediated autoimmune demyelinating disease. We asked if TMEV infection of microglia activates their innate immune functions and/or activates their ability to serve as antigen-presenting cells for activation of T-cell responses to virus and endogenous myelin epitopes. The results indicate that microglia lines can be persistently infected with TMEV and that infection significantly upregulates the expression of cytokines involved in innate immunity (tumor necrosis factor alpha, interleukin-6 [IL-6], IL-18, and, most importantly, type I interferons) along with upregulation of major histocompatibility complex class II, IL-12, and various costimulatory molecules (B7-1, B7-2, CD40, and ICAM-1). Most significantly, TMEV-infected microglia were able to efficiently process and present both endogenous virus epitopes and exogenous myelin epitopes to inflammatory CD4(+) Th1 cells. Thus, TMEV infection of microglia activates these cells to initiate an innate immune response which may lead to the activation of naive and memory virus- and myelin-specific adaptive immune responses within the CNS.  相似文献   

11.
Infection with Theiler''s murine encephalomyelitis virus (TMEV) in the central nervous system (CNS) of susceptible mice results in an immune-mediated demyelinating disease which is considered a relevant viral model of human multiple sclerosis. We previously demonstrated that the expression of positive costimulatory molecules (CD40, CD80, and CD86) is higher on the microglia of TMEV-resistant C57BL/6 (B6) mice than the microglia of TMEV-susceptible SJL/J (SJL) mice. In this study, we analyzed the expression levels of the negative costimulatory molecules PD-1 and PDL-1 in the CNS of TMEV-infected SJL mice and B6 mice. Our results indicated that TMEV infection induces the expression of both PD-1 and PDL-1 on microglia and macrophages in the CNS but not in the periphery. The expression of PD-1 only on CNS-infiltrating macrophages and not on resident microglia was considerably higher (>4-fold) in TMEV-infected SJL mice than TMEV-infected B6 mice. We further demonstrated that interleukn-6 (IL-6) is necessary to induce the maximal expression of PDL-1 but not PD-1 after TMEV infection using IL-6-deficient mice and IL-6-transgenic mice in conjunction with recombinant IL-6. In addition, cells from type I interferon (IFN) receptor knockout mice failed to upregulate PD-1 and PDL-1 expression after TMEV infection in vitro, indicating that type I IFN signaling is associated with the upregulation. However, other IFN signaling may also participate in the upregulation. Taken together, these results strongly suggest that the expression of PD-1 and PDL-1 in the CNS is primarily upregulated following TMEV infection via type I IFN signaling and the maximal expression of PDL-1 additionally requires IL-6 signaling.  相似文献   

12.
Abstract: Several pieces of evidence suggest a major role for brain macrophages in the overproduction of neuroactive kynurenines, including quinolinic acid, in brain inflammatory conditions. In the present work, the regulation of kynurenine pathway enzymes by interferon-γ (IFN-γ) was studied in immortalized murine macrophages (MT2) and microglial (N11) cells. In both cell lines, IFN-γ induced the expression of indoleamine 2,3-dioxygenase (IDO) activity. Whereas tumor necrosis factor-α did not affect enzyme induction by IFN-γ, lipopolysaccharide modulated IDO activity differently in the two IFN-γ-activated cell lines, causing a reduction of IDO expression in MT2 cells and an enhancement of IDO activity in N11 cells. Kynurenine aminotransferase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilic acid dioxygenase appeared to be constitutively expressed in both cell lines. Kynurenine 3-hydroxylase activity was stimulated by IFN-γ. It was notable that basal kynureninase activity was much higher in MT2 macrophages than in N11 microglial cells. In addition, IFN-γ markedly stimulated the activity of this enzyme only in MT2 cells. IFN-γ-treated MT2 cells, but not N11 cells, were able to produce detectable amounts of radiolabeled 3-hydroxyanthranilic acid quinolinic acids from l -[5-3H]tryptophan. These results support the notion that activated invading macrophages may constitute one of the major sources of cerebral quinolinic acid during inflammation.  相似文献   

13.
The oxidative process of LDL particles generates molecules which are structurally similar to platelet-activating factor (PAF), and some effects of oxidized LDL (oxLDL) have been shown to be dependent on PAF receptor (PAFR) activation. In a previous study, we showed that PAFR is required for upregulation of CD36 and oxLDL uptake. In the present study we analyzed the molecular mechanisms activated by oxLDL in human macrophages and the contribution of PAFR to this response. Human adherent monocytes/macrophages were stimulated with oxLDL. Uptake of oxLDL and CD36 expression were determined by flow cytometry; MAP kinases and Akt phosphorylation by Western blot; IL-8 and MCP-1 concentration by ELISA and mRNA expression by real-time PCR. To investigate the participation of the PI3K/Akt pathway, Gαi-coupled protein or PAFR, macrophages were treated with LY294002, pertussis toxin or with the PAFR antagonists WEB2170 and CV3988, respectively before addition of oxLDL. It was found that the addition of oxLDL to human monocytes/macrophages activates the PI3K/Akt pathway which in turn activates the MAPK (p38 and JNK). Phosphorylation of Akt requires the engagement of PAFR and a Gαi-coupled protein. The upregulation of CD36 protein and the uptake of oxLDL as well as the IL-8 production are dependent on PI3K/Akt pathway activation. The increased CD36 protein expression is dependent on PAFR and Gαi-coupled protein. Transfection studies using HEK 293t cells showed that oxLDL uptake occurs with either PAFR or CD36, but IL-8 production requires the co-transfection of both PAFR and CD36. These findings show that PAFR has a pivotal role in macrophages response to oxLDL and suggest that pharmacological intervention at the level of PAFR activation might be beneficial in atherosclerosis.  相似文献   

14.
HIV type 1 (HIV-1)-associated dementia (HAD) is believed to occur due to aberrant activation of monocyte-derived macrophages and brain-resident microglial cells by viral proteins as well as by the proinflammatory mediators released by infected cells. To investigate the inflammatory aspects of the disease, we examined the levels of soluble CD40L (sCD40L) in paired samples of plasma and cerebrospinal fluid obtained from 25 HIV-infected individuals. A significantly higher level of sCD40L was detected in both cerebrospinal fluid and plasma from HIV-infected patients with cognitive impairment, compared with their nonimpaired counterparts. The contribution of sCD40L to the pathogenesis of HAD was then examined by in vitro experiments. rCD40L synergized with HIV-1 Tat to increase TNF-alpha release from primary human monocytes and microglia, in an NF-kappaB-dependent manner. The mechanistic basis for this synergism was attributed to a Tat-mediated up-regulation of CD40 in monocytes and microglia. Finally, the CD40L-mediated increase in TNF-alpha production by monocytes was shown to be biologically important; immunodepletion experiments revealed that TNF-alpha was essential for the neurotoxic effects of conditioned medium recovered from Tat/CD40L-treated monocytes. Taken together, our results show that CD40 signaling in microglia and monocytes can synergize with the effects of Tat, further amplifying inflammatory processes within the CNS and influencing neuronal survival.  相似文献   

15.
Kouadir M  Yang L  Tan R  Shi F  Lu Y  Zhang S  Yin X  Zhou X  Zhao D 《PloS one》2012,7(1):e30756
Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP) fragment 106-126 (PrP(106-126)). We first examined the time course of CD36 mRNA expression upon exposure to PrP(106-126) in BV2 microglia. We then analyzed different parameters of microglial activation in PrP(106-126)-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb). The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP(106-126). The results showed that PrP(106-126) treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), increased iNOS expression and nitric oxide (NO) production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP(106-126)-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP(106-126)-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP(106-126)-treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP(106-126). Together, these results suggest that CD36 is involved in PrP(106-126)-induced microglial activation and that the participation of CD36 in the interaction between PrP(106-126) and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides and open perspectives for new therapeutic strategies for prion diseases by modulation of CD36 signaling.  相似文献   

16.
Duncan DS  Miller SD 《PloS one》2011,6(4):e18548
The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4(+) T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b(+)CD11c(-)CD45(HIGH) monocytes/macrophages and CD11b(+)CD11c(+)CD45(HIGH) dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4(+) and CD8(+) T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD.  相似文献   

17.
The activation of the inflammatory/immunological response system is suggested to be related to the pathophysiology of schizophrenia. Aripiprazole is a novel atypical antipsychotic, which is a high-affinity dopamine D2 receptor partial agonist. Atypical antipsychotics, all of which have dopamine D2 receptor antagonism, have recently reported to have significantly inhibitory effects on interferon (IFN)-γ-induced microglial activation in vitro . In the present study, we investigated whether or not aripiprazole also has anti-inflammatory effect on IFN-γ-induced microglial activation. Not quinpirole, dopamine D2 full agonist, but aripiprazole significantly inhibited the generation of nitric oxide (NO) and tumor necrosis factor (TNF)-α from IFN-γ-activated microglia and suppressed the IFN-γ-induced elevation of intracellular Ca2+ concentrations ([Ca2+]i) in murine microglial cells. Increased [Ca2+]i has been reported to be required, but by itself not sufficient, for the release of NO and certain cytokines. As a result, we can speculate that aripiprazole may inhibit IFN-γ-induced microglial activation through the suppression of IFN-γ-induced elevation of [Ca2+]i in microglia. Our results demonstrated that not only antipsychotics which have dopamine D2 receptor antagonism but also aripiprazole have anti-inflammatory effects via the inhibition of microglial activation. Antipsychotics may therefore have a potentially useful therapeutic effect on patients with schizophrenia by reducing the microglial inflammatory reactions.  相似文献   

18.
beta-Amyloid accumulation is associated with pathologic changes in the brain in Alzheimer's disease and has recently been identified in plaques of another chronic inflammatory disorder, atherosclerosis. The class B scavenger receptor, CD36, mediates binding of fibrillar beta-amyloid to cells of the monocyte/macrophage lineage, including brain macrophages (microglia). In this study, we demonstrate that in microglia and other tissue macrophages, beta-amyloid initiates a CD36-dependent signaling cascade involving the Src kinase family members, Lyn and Fyn, and the mitogen-activated protein kinase, p44/42. Interruption of this signaling cascade, through targeted disruption of Src kinases downstream of CD36, inhibits macrophage inflammatory responses to beta-amyloid, including reactive oxygen and chemokine production, and results in decreased recruitment of microglia to sites of amyloid deposition in vivo. The finding that engagement of CD36 by beta-amyloid initiates a Src kinase-dependent production of inflammatory mediators in cells of the macrophage lineage reveals a novel receptor-mediated pro-inflammatory signaling pathway of potential therapeutic importance.  相似文献   

19.
Activation of microglia, the resident macrophages in the CNS, plays a significant role in neuronal death or degeneration in a broad spectrum of CNS disorders. Recent studies indicate that nanomolar concentrations of the serine protease, thrombin, can activate microglia in culture. However, in contrast to other neural cells responsive to thrombin, the participation of novel protease-activated receptors (PARs), such as the prototypic thrombin receptor PAR1, in thrombin-induced microglial activation was cast in doubt. In this report, by utilizing primary microglial cultures from PAR1 knockout (PAR1-/-) mice, application of the PAR1 active peptide TRAP-6 (SFLLRN) in comparison to a scrambled peptide (LFLNR), we have unambiguously demonstrated that murine microglia constitutively express PAR1 mRNA that is translated into fully functional protein. Activation of the microglial PAR1 induces a rapid cytosolic free [Ca2+]i increase and transient activation of both p38 and p44/42 mitogen-activated protein kinases. Moreover, although in part, this PAR1 activation directly contributes to thrombin-induced microglial proliferation. Furthermore, although not directly inducing tumor necrosis factor-alpha (TNF-alpha) release, PAR1 activation up-regulates microglial CD40 expression and potentiates CD40 ligand-induced TNF-alpha production, thus indirectly contributing to microglial activation. Taken together, these results demonstrate an essential role of PAR1 in thrombin-induced microglial activation. In addition, strategies aimed at blocking thrombin signaling through PAR1 may be therapeutically valuable for diseases associated with cerebral vascular damage and significant inflammation with microglial activation.  相似文献   

20.
Abstract Lipoarabinomannan derived from the virulent Erdman strain and a rapidly growing, laboratory-attenuated strain of Mycobacterium tuberculosis were evaluated for their ability to modulate the production of nitric oxide (NO) by macrophages activated with IFN-γ or IFN-γ and LPS. It was observed that in macrophages pretreated with 100 μg ml−1 LAM, the NO induced by IFN-γ alone was augmented while the NO induced by IFN-γ and LPS was reduced. LAM was also shown to synergize with IFN-γ in the induction of NO, with AraLAM from the attenuated strain exhibiting greater potency than ManLAM from the Erdman strain. Despite the modulation of NO production, LAM did not affect the IFN-γ-induced macrophage growth inhibition of Francisella tularensis LVS, an organism whose growth inhibition in activated macrophages is dependent upon NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号