首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inactivation of native soybean lipoxygenase-1 was observed upon preincubation with (NEt4)[PtCl3(P(Bun)3)]. Removal of the platinum complex(es) from the inactivated enzyme by treatment with sodium diethyldithiocarbamate (Naddtc) which reverses methionine but not cysteine binding, restores most of the activity. Linoleic acid, an enzyme substrate, protects it from inactivation. The quenching of the fluorescence of the putative active site tryptophans which accompanies inactivation disappears after Naddtc reactivation. The (NEt4)[PtCl3(P(Bun)3)]-inactivated enzyme iron(II) cannot be oxidized at variance with that of the native or Naddtc reactivated enzyme, as checked by EPR spectroscopy. These results show that at least one methionine is close to the iron binding site in soybean lipoxygenase-1.  相似文献   

3.
Using DTT-modulated thylakoid membranes we studied tight nucleotide binding and ATP content in bound nucleotides and in the reaction mixture during [14C] ADP photophosphorylation. The increasing light intensity caused an increase in the rate of [14C] ADP incorporation and a decrease in the steady-state level of tightly bound nucleotides. Within the light intensity range from 11 to 710 w m–2, ATP content in bound nucleotides was larger than that in nucleotides of the reaction mixture; the most prominent difference was observed at low degrees of ADP phosphorylation. The increasing light intensity was accompanied by a significant increase of the relative ATP content in tightly bound nucleotides. The ratio between substrates and products formed at the tight nucleotide binding site during photophosphorylation was suggested to depend on the light-induced proton gradient across the thylakoid membrane.Abbreviations AdN adenine nucleotide - Chl chlorophyll - DTT dithiothreitol - FCCP carbonylcianide p-trifluoromethoxyphenilhydrazone - Pi inorganic orthophosphate - PMS phenazine methosulfate - TLC thin-layer chromatography - Tricine N-[tris(hydroxymethyl)methyl] glycine  相似文献   

4.
The binary complex of pig plasma gelsolin with Mg2+-G-actin in ATP and ADP   总被引:1,自引:0,他引:1  
H E Harris 《FEBS letters》1988,233(2):359-362
Pig plasma gelsolin combined with Mg-G-actin at less than 10(-8) M Ca2+ to yield a binary complex. Complexes formed from G-actin with bound ATP or ADP. They contained approx. 1 mol of non-exchangeable nucleotide per mol of actin. ATP hydrolysis was not coupled to binary complex formation, but ATP in the complex hydrolysed very slowly. The nucleotide in the binary complex behaved like one of the two nucleotide molecules in the ternary complex (two actin monomers to one gelsolin), but the actin-gelsolin interaction was weaker in the binary complex.  相似文献   

5.
Dupureur CM  Conlan LH 《Biochemistry》2000,39(35):10921-10927
In efforts to understand the mechanisms of many nucleic acid enzymes, the first site-directed mutations are made at conserved acidic active residues. Almost without exception, the low or null activities of the resulting variants are attributed to the importance of the acidic residue(s) to the ligation of required metal ions. Using (25)Mg NMR spectroscopy as a direct probe of metal ion binding and the homodimeric PvuII restriction endonuclease as a model system, this interpretation is examined and clarified. Our results indicate that Mg(II) binds wild-type PvuII endonuclease in the absence of DNA with a K(d,app) of 1.9 mM. Hill analysis yields an n(H) coefficient of 1.4, a value consistent with the binding of more than one Mg(II) ion per monomer active site. Variable pH studies indicate that two ionizable groups are responsible for Mg(II) binding by wild-type PvuII endonuclease near physiological pH. The pK(a,app) for these ionizations is 6.7, a value which is unusual for acidic residues but consistent with data obtained for critical groups in MunI endonuclease and a number of other hydrolases. To assign residues critical to ligating Mg(II), binding measurements were performed on the low activity catalytic site mutants E68A and D58A. As expected, E68A binds Mg(II) ions very weakly (K(d,app) approximately 40 mM), implicating Glu68 as critical to Mg(II) binding. Interestingly, while D58A has only residual specific activity, it retains an affinity for Mg(II) with a K(d,app) of 3.6 mM and exhibits a Hill coefficient of 0.7. Moreover, in this variant, multiple ionizable groups with pK(a,app) of 7.2 are involved in Mg(II) binding, suggesting a shuffling of Mg(II) ligands in the active site. These data indicate that Asp58 is important for the critical positioning of metal ion(s) required for catalysis.  相似文献   

6.

ATP/ADP isopentenyltransferase (IPTs) genes encode key enzymes involved in cytokinin synthesis. In this study, the functions of ATP/ADP PpIPTs in peach were investigated. According to the genome sequence, we have found and verified that there are four members of this gene family in peach, namely, PpIPT1, PpIPT3, PpIPT5, and PpIPT7. Overexpression of each of these genes in Arabidopsis resulted in increased levels of cytokinins in the transgenic plants, confirming their roles in cytokinin synthesis. Numerous altered phenotypes were observed in the transgenic plants, including vigorous growth and enhanced salt resistance. ATP/ADP PpIPTs were expressed in tissues throughout the plant, but the expression patterns differed between the genes. Only PpIPT3 was upregulated within 2 h after the application of nitrate to N-deprived peach seedlings, and the increase was resistant to pre-treatment of a specific nitrate metabolism inhibitor. Results showed that ATP/ADP PpIPT expression levels decreased significantly in pulp within 2 weeks after flowering and remained low. However, pulp cytokinin levels were quite high during this time. Only PpIPT5 in seed increased significantly within 2 weeks after flowering, which was consistent with cytokinin levels during early fruit development, suggesting that PpIPT5 in seed is the key gene for cytokinin biosynthesis during early fruit development. ATP/ADP PpIPT expression also increased significantly during later fruit development in seed.

  相似文献   

7.
Pre-steady-state kinetic analyses on the formation of tyrosyl adenylate from tyrosine and each of the four diastereomers of alpha- and beta-phosphorothioate adenosine triphosphates [ATP alpha S and ATP beta S; Eckstein, F., & Goody, R. (1976) Biochemistry 15, 1685-1691; Yee, D., Armstrong, V. W., & Eckstein, F. (1979) Biochemistry 18, 4116-4123] were performed in the presence of Mg2+, Co2+, and Cd2+ as the divalent metal ion cofactor. A modest preference of 5.5-fold in kappa 3/KA' (where kappa 3 is the rate constant for tyrosyl adenylate formation and KA' is the dissociation constant for ATP, or phosphorothioate ATP, from the E.Tyr.metal.ATP complex) for the Sp ATP alpha S diastereomer and the absence of an inversion of preference when the metal ion is changed suggest that there is a stereospecific enzyme-alpha-phosphate interaction and that there is no direct metal ion interaction with the alpha-phosphate. The extent of reaction of the ATP alpha S diastereomers (30-50%) implies that these analogues are more susceptible to the hydrolytic site reaction previously reported for this enzyme [Wells, T. N. C., & Fersht, A. R. (1986) Biochemistry 25, 1881-1886]. The strong preference in kappa 3/KA' for the RP ATP beta S diastereomer (16-fold for Mg2+ and 50-fold for Co2+) is indicative of a stereospecific interaction with the pro SP beta oxygen of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
PercevalHR (Perceval High Resolution) is an artificially designed fluorescent protein, which changes its excitation spectrum based on the ADP/ATP ratio of the environment. Here we demonstrated that PercevalHR can be used for monitoring energy status of Saccharomyces cerevisiae cells, which are affected by diauxic shift and mitochondria inhibition, in a non-invasive and non-destructive manner.  相似文献   

9.
18 O isotope exchange measurements of photosystem II (PSII) in thylakoids from wild-type and mutant Synechocystis have been performed to investigate binding of substrate water to the high-affinity Mn4 site in the oxygen-evolving complex (OEC). The mutants investigated were D1-D170H, a mutation of a direct ligand to the Mn4 ion, and D1-D61N, a mutation in the second coordination sphere. The substrate water 18 O exchange rates for D61N were found to be 0.16+/-0.02 s(-1) and 3.03+/-0.32 s(-1) for the slow and fast phases of exchange, respectively, compared with 0.47+/-0.04 s(-1) and 19.7+/-1.3 s(-1) for the wild-type. The D1-D170H rates were found to be 0.70+/-0.16 s(-1) and 24.4+/-4.6 s(-1) and thus are almost within the error limits for the wild-type rates. The results from the D1-D170H mutant indicate that the high-affinity Mn4 site does not directly bind to the substrate water molecule in slow exchange, but the binding of non-substrate water to this Mn ion cannot be excluded. The results from the D61N mutation show an interaction with both substrate water molecules, which could be an indication that D61 is involved in a hydrogen bonding network with the substrate water. Our results provide limitations as to where the two substrate water molecules bind in the OEC of PSII.  相似文献   

10.
Alkylation of ATP with iodoacetic acid at pH 6.5 yielded 1-carboxymethyl-ATP which, after alkaline rearrangement, gave N-6-carboxymethyl-ATP. Condensation of this analogue with 1,6-diaminohexane in the presence of a water-soluble carbodiimide generated N-6-[(6-aminohexyl)carbamoylmethyl]-ATP in an overall yield of 40% based on the parent nucleotide ATP. The coenzymic activities of both N-6-adenine-substituted derivatives of ATP were tested with three kinases. Both derivatives showed coenzymic function against hexokinase with the "long" derivative having highest activity (95%) relative to unsubstituted ATP. Their activities towards the other two kinases tested was negligible except with the "long" analogue against glycerokinase (20%). The latter ATP analogue, when bound to Sepharose through its terminal amino group, could be dephosphorylated to the corresponding ADP analogue with soluble hexokinase yielding glucose 6-phosphate in an enzymic "solidphase" fashion. The Sepharose-bound ADP formed could subsequently be phosphorylated back to ATP using soluble acetate kinase. Sepharose-ATP preparations were also used in preliminary affinity chromatography studies using citrate synthase. Alkylation of ADP following the above procedure yielded the corresponding ADP analogue, N-6-[(6-aminohexyl)carbamoylmethyl]-ADP in an overall yield of 40%. Alkylation of AMP yielded the corresponding N-6-[(6-aminohexyl)carbamoylmethyl]-AMP in an overall yield of 45%.  相似文献   

11.
The biosynthesis of two mitochondrial membrane proteins - subunit IV of cytochrome oxidase and ADP/ATP translocator protein was studied in intact ascites hepatoma cells. Using pulse-chase labeling and rapid cell fractionation it was possible to identify the precursoric forms of these inner mitochondrial membrane proteins. It was found that the subunit IV of cytochrome oxidase is synthesized in the cytoplasm of mammalian cells in the form of a larger precursor while ADP/ATP translocator protein is synthesized in the form that is electrophoretically undistinguishable from the mature membrane integrated form.  相似文献   

12.
The crystal structure, magnetic, redox and spectroscopic properties of a novel unsymmetrical dinuclear copper(II) complex, prepared by the reaction between copper(II) perchlorate, sodium acetate and the unsymmetrical, binucleating ligand HTPPNOL, where HTPPNOL is N,N,N′-tris-(2-pyridylmethyl)-1,3-diaminopropan-2-ol, is reported. HTPPNOL (1 equiv.) reacted with 1 equiv. of copper(II) ion, in methanol, and produced the mononuclear copper complex [Cu(TPPNOL)](ClO4)(BPh4) (1). On the other hand, the reaction of 1 equiv. of HTPPNOL with 2 equiv. each of copper (II) ion and acetate, in methanol, produced the dinuclear complex [Cu2(TPPNOL)(OOCCH3)](ClO4)2 (2), whose structure has been determined by X-ray diffraction. In complex 2, as a result of the inherent asymmetry of the ligand HTPPNOL, one copper ion is five-coordinated (distorted trigonal-bipyramidal) while the other copper is four-coordinated (distorted square-planar). Then, as a result of the presence of distinct geometries for the metal centres, complex 2 exhibits a ferromagnetic coupling (J=+25.41 cm−1). Titration experiments carried out on the dinuclear complex suggest a pKa=8.0, which was related to the aquo/hydroxo equilibrium. Complex 2 is able to oxidise 3,5-di-tert-butylcatechol to the respective o-quinone. The oxidation reaction was studied by following the appearance of the quinone spectrophotometrically, at pH 8.0 and 25 °C.  相似文献   

13.
When added to intact C6 glioma cells in the micromolar range of concentrations, ADP and ATP induce an inhibition of the isoproterenol-elicited cAMP responses. ATP is rapidly hydrolyzed by the ectonucleotidases present on these cells, with an apparent Km of 50 microM and a Vmax of 1.1 nmol/min/10(6) cells. cAMP responses are also inhibited by millimolar concentrations of either ATP in the presence of an ATP-regenerating system to prevent ADP accumulation or AMP-PCP. These observations show that, in C6 glioma cells, ADP is a more potent inhibitor of cAMP production than ATP, the latter acting indirectly, via its rapid hydrolysis to ADP. The additive inhibition of isoproterenol-elicited cAMP responses induced, on one hand, by the treatment of the cells with a phorbol ester and by addition of ADP to the cells, and, on the other hand, by the progressive disappearance of the effects of ADP and ATP when cells are treated with increasing concentrations of Pertussis toxin, demonstrate that ADP and ATP exert their action in C6 glioma cells via a P2 purinoceptor probably negatively coupled to adenylate cyclase and a G regulatory protein.  相似文献   

14.
Previous sequence analyses have suggested the existence of two distinct classes of aminoacyl-tRNA synthetase. The partition was established on the basis of exclusive sets of sequence motifs (Eriani et al. [1990] Nature 347:203–306). X-ray studies have now well defined the structural basis of the two classes: the class I enzymes share with dehydrogenases and kinases the classic nucleotide binding fold called the Rossmann fold, whereas the class II enzymes possess a different fold, not found elsewhere, built around a six-stranded antiparallel -sheet. The two classes of synthetases catalyze the same global reaction that is the attachment of an amino acid to the tRNA, but differ as to where on the terminal adenosine of the tRNA the amino acid is placed: class I enzymes act on the 2 hydroxyl whereas the class II enzymes prefer the 3 hydroxyl group. The three-dimensional structure of aspartyl-tRNA synthetase from yeast, a typical class II enzyme, is described here, in relation to its function. The crucial role of the sequence motifs in substrate binding and enzyme structure is high-lighted. Overall these results underline the existence of an intimate evolutionary link between the aminoacyl-tRNA synthetases, despite their actual structural diversity.Based on a presentation made at a workshop— Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: G. Eriani  相似文献   

15.
Mapping the active site of yeast RNA polymerase B (II)   总被引:11,自引:0,他引:11  
Yeast RNA polymerase B (II) was incubated with a collection of 13 different nucleotide derivatives and affinity labeled by allowing DNA-directed phosphodiester bond formation. The 32P-labeled site was localized in the C-terminal part of the B150 subunit by microsequencing a proteolytic fragment, then further mapped by a combination of extensive or single-hit chemical cleavage reactions and analysis of the labeled peptide patterns. The affinity label was mapped to between Asn946 and Met999, within one of the nine regions that are conserved between B150 and the bacterial beta subunit. The results underscore the conservative evolution of the catalytic center of eukaryotic and bacterial RNA polymerases.  相似文献   

16.
Using extended Hückel theory (EHT), a theoretical study of the preferred conformations of ATP and ADP are compared with the experimentally observed structures, as the second of a set of studies on the molecular conformations of AMP, ATP and ADP. Results show that EHT yields a minimum energy ATP configuration that corresponds to the observed structure when atoms from the crystal are included in the calculations. Eight torsional angles were examined for ATP and six for ADP with all atoms included in the calculations. Results indicate that torsional rotations involving the adenosine part of the molecule show well-defined local minima. The predominant feature of the pyrophosphate section, however, is a low energy profile enabling the molecule to adapt its conformation to the environmental conditions.  相似文献   

17.
18.
19.
Photosystem II (PSII) is the photosynthetic enzyme catalyzing the oxidation of water and reduction of plastoquinone (Q). This reaction occurs at a catalytic site containing four manganese atoms and cycling among five oxidation states, the Sn states, where n refers to the number of oxidizing equivalents stored. Biochemical and spectroscopic techniques have been used previously to conclude that aspartate 170 in the D1 subunit influences the structure and function of the PSII active site (Boerner, R. J., Nguyen, A. P., Barry, B. A., and Debus, R. J. (1992) Biochemistry 31, 6660-6672). Substitution of glutamate for aspartate 170 resulted in an assembled manganese cluster, which was capable of enzymatic turnover, but at lower steady-state oxygen evolution rates. Here, we obtained the difference (light-minus-dark) Fourier transform IR spectrum associated with the S2Q--minus-S1Q transition by illumination of oxygen-evolving wild-type and DE170D1 PSII preparations at 200 K. These spectra are known to be dominated by contributions from carboxylic acid and carboxylate residues that are close to or ligating the manganese cluster. Substitution of glutamate for aspartate 170 results in alterations in the S2Q--minus-S1Q spectrum; the alterations are consistent with a change in carboxylate coordination to manganese or calcium. In particular, the spectra are consistent with a shift from bridging/bidentate carboxylates in wild-type PSII to unidentate carboxylate ligation in DE170D1 PSII.  相似文献   

20.
Nucleotides, e.g. ATP and ADP, are important signaling molecules, which elicit several biological responses. The degradation of nucleotides is catalyzed by a family of enzymes called NTPDases (nucleoside triphosphate diphosphohydrolases). The present study reports the enzymatic properties of a NTPDase (CD39, apyrase, ATP diphosphohydrolase) in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for ATP and ADP hydrolysis in a pH range of 7.5-8.0 in the presence of Ca(2+) (5 mM). The enzyme displayed a maximal activity for ATP and ADP hydrolysis at 37 degrees C. It was able to hydrolyze purine and pyrimidine nucleosides 5'-di and triphosphates, being insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (0.1 mM). A significant inhibition of ATP and ADP hydrolysis (68% and 34%, respectively) was observed in the presence of 20 mM sodium azide, used as a possible inhibitor of ATP diphosphohydrolase. Levamisole (1 mM) and tetramisole (1 mM), specific inhibitors of alkaline phosphatase and P1, P(5)-di (adenosine 5'-) pentaphosphate, an inhibitor of adenylate kinase did not alter the enzyme activity. The presence of a NTPDase in brain membranes of zebrafish may be important for the modulation of nucleotide and nucleoside levels, controlling their actions on specific purinoceptors in central nervous system of this specie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号