首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim: Polymorphism in the monocyte chemoattractant protein-1 (MCP-1) gene (A-2518G) has been associated with functional effects. The aim of the present study was to assess the effect of this polymorphism on end-stage renal disease (ESRD) and cardiovascular disease (CVD) in hemodialyzed patients. Methods: A total of 720 patients with ESRD treated with hemodialysis (450 patients with CVD) and 325 healthy control subjects were genotyped for the MCP-1 -2518 polymorphism by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) procedure. Results: There was a significant difference in genotype frequencies between entire group of hemodialyzed patients and controls (p < 0.01). The odds ratio for the risk allele was 1.85, 95% CI 1.49–2.32 (p < 0.01). Hemodialyzed patients were divided into subgroups with CVD (n = 450) and without CVD (n = 270). The G allele carriers occurred with significantly higher frequency in patients with CVD (62% vs. 38% in patients without CVD and 36% in controls). The odds ratio for the risk allele for patients with CVD vs. those without CVD was 2.17, 95% CI 1.71–2.79. There was no statistically significant difference in the distribution of MCP-1 genotypes between ESRD patients without CVD and healthy controls. Conclusion: Our results demonstrate for the first time an association between the polymorphism in the regulatory region of the MCP-1 gene and susceptibility to CVD in hemodialyzed patients.  相似文献   

2.
3.
Although fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 3 (FGFR3) both inhibit longitudinal bone growth, little is known about the relationship between FGF2 and FGFR3. Accordingly, the current study examined the expression of FGFR3 mRNA after the administration of FGF2 using cultured chondrocytes from day 17 chick embryos to evaluate the relationship between FGF2 and FGFR3. The chondrocytes were isolated from the caudal one-third portion (LS) of sterna, peripheral regions (USP) and central core regions (USC) of the cephalic portion of the sterna, and lower portion of the proximal tibial growth plate (Ti) of day 17 chick embryo. The expression of FGFR1, FGFR3, and type II and X collagen mRNA in the chondrocytes from the LS, USP, USC, and Ti was determined. FGFR1 was not expressed in the LS and USP chondrocytes, yet strongly expressed in the USC and Ti chondrocytes. With a treatment of FGF2, the expression of FGFR1 slightly increased in the USC chondrocytes and was not related with the concentration of FGF2 in the Ti chondrocytes. FGFR3 was expressed in all the chondrocyte types, yet strongly increased in the LS, USC, USP, and Ti in that order according to the concentration of FGF2. For the LS and USP chondrocytes, the expression of FGFR3 with FGF2 increased in a 4-day culture, yet decreased in a 6-day culture, whereas for the USC chondrocytes, the expression of FGFR3 mRNA with FGF2 increased in a 2-day culture, yet decreased in a 4-day culture, suggesting that the hypertrophic chondrocytes were more numerous and sensitive compared to the proliferative chondrocytes. For all the chondrocyte types, FGF2 appeared to be up-regulated to FGFR3, as the expression of FGFR3 mRNA increased with a higher concentration of FGF2 until a peak level. In conclusion, FGF2 was found to up-regulate to FGFR3 until the peak level of FGFR3 mRNA expression, while in hypertrophic chondrocytes, FGFR3 appeared to cause the differentiaton of chondrocytes, resulting in the inhibition of longitudinal bone growth after the peak level of FGFR3 mRNA expression.  相似文献   

4.
张婷  孙曼霁 《生命科学》2007,19(2):208-213
生长激素/胰岛素样生长因子-1(GH/IGF-1)轴的合成、分泌、调节及生物学活性与阿尔茨海默病(AD)有密切关系。生长激素(GH)的合成和分泌受生长激素释放激素(GHRH)正向调节。GH/IGF-1轴活性下降导致一系列生理功能变化。GH/IGF-1缺乏可引起衰老及神经退行性变(AD)而导致认知功能的下降,相应激素的补给可以抑制或逆转这种认知障碍。越来越多的证据表明:GH/IGF-1参与AD型痴呆病理过程,对AD有很好的治疗应用前景。本文就生长激素/胰岛素样生长因子1在AD发病中的机理和药理学研究做一综述。  相似文献   

5.
6.
Abstract

Epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family, which is thought to be involved in the development of cancer, as the EGFR gene is often amplified, and/or mutated in cancer cells. Lung cancer remains one of the most major causes of morbidity and mortality worldwide, accounting for more deaths than any other cancer cause. Gene polymorphism factor has been reported to be an important factor which increases the susceptibility of lung cancer. There lacks a well-documented diagnostic approach for the lung cancer risk, and the etiology of lung cancer is not clear. The current systematic review was performed to explore the association of EGFR gene polymorphism with lung cancer risk. In this review, association of EGFR 181946C?>?T, 8227G?>?A gene polymorphism with lung cancer was found, and EGFR Short genotype of cytosine adenine repeat number polymorphism was significantly associated with an increased risk of lung cancer.  相似文献   

7.
There were conflicting results about whether promoter polymorphisms (− 2578C/A, − 1154G/A) of vascular endothelial growth factor (VEGF) gene is a risk factor of Alzheimer's disease (AD). To determine the relationship between them, a meta-analysis is needed urgently. We searched all the reports about VEGF promoter polymorphisms (− 2578C/A, − 1154G/A) and AD risk from PubMed, Web of Science, Cochrane Collaboration and Google Scholar database for the period up to 1 August, 2012. A total of 7 studies were included in this meta-analysis. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated applying fixed or random effects models. There was no significant association between VEGF − 2578C/A polymorphisms and AD risk in all gene models (OR = 1.08, 95% CI = 0.94–1.23 for A vs. C; OR = 1.19, 95% CI = 0.89–1.59 for AA vs. CC; OR = 1.15, 95% CI = 0.91–1.45 for AA vs. CC + CA; OR = 1.11, 95% CI = 0.98–1.25 for AA + CA vs. CC). Similar results were provided in subgroup analysis by ethnicity. For the VEGF − 1154G/A polymorphisms, lack of an association was also found (A vs. G: OR = 0.89, 95% CI = 0.79–1.01; AA vs. GG: OR = 0.82, 95% CI = 0.62–1.08; AA vs. GA + GG: OR = 0.89, 95% CI = 0.68–1.16; AA + AG vs. GG: OR = 0.85, 95% CI = 0.72–1.00). Conclusively, the result of this meta-analysis suggested that VEGF promoter polymorphisms (− 2578C/A, − 1154G/A) might not contribute to the susceptibility of AD.  相似文献   

8.
9.
Various molecular mechanisms of unconventional secretion of fibroblast growth factor 2 and galectin-1 have been proposed. A non-vesicular pathway that is based on direct translocation across the plasma membrane has been described. In other studies, however, release into the extracellular space of cell-derived vesicles was implicated in both FGF-2 and Gal-1 secretion. Such vesicles were proposed to originate either from plasma membrane shedding or by the release of exosomes. Employing an inhibitor of plasma membrane blebbing and based on a quantitative biochemical analysis of cell culture supernatants for vesicles potentially carrying FGF-2 or Gal-1, we demonstrate that both FGF-2 and Gal-1 are not exported by shedding of plasma membrane-derived vesicles.  相似文献   

10.
To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model.  相似文献   

11.
Keratinocyte growth factor (KGF/FGF7) and fibroblast growth factor 10 (FGF10/KGF2) regulate keratinocyte proliferation and differentiation by binding to the tyrosine kinase KGF receptor (KGFR). KGF induces keratinocyte motility and cytoskeletal rearrangement, whereas a direct role of FGF10 on keratinocyte migration is not clearly established. Here we analyzed the motogenic activity of FGF10 and KGF on human keratinocytes. Migration assays and immunofluorescence of actin cytoskeleton revealed that FGF10 is less efficient than KGF in promoting migration and exerts a delayed effect in inducing lamellipodia and ruffles formation. Both growth factors promoted phosphorylation and subsequent membrane translocation of cortactin, an F-actin binding protein involved in cell migration; however, FGF10-induced cortactin phosphorylation was reduced, more transient and delayed with respect to that promoted by KGF. Cortactin phosphorylation induced by both growth factors was Src-dependent, while its membrane translocation and cell migration were blocked by either Src and PI3K inhibitors, suggesting that both pathways are involved in KGF- and FGF10-dependent motility. Furthermore, siRNA-mediated downregulation of cortactin inhibited KGF- and FGF10-induced migration. These results indicate that cortactin is involved in keratinocyte migration promoted by both KGF and FGF10.  相似文献   

12.
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors.  相似文献   

13.
Single-domain antibodies in VHH format specific for fibroblast growth factor receptor 1 (FGFR1) were isolated from a phage-display llama naïve library. In particular, phage elution in the presence of the natural receptor ligand fibroblast growth factor (FGF) allowed for the identification of recombinant antibodies that compete with FGF for the same region on the receptor surface. These antibodies posses a relatively low affinity for FGFR1 and were never identified when unspecific elution conditions favoring highly affine binders were applied to panning procedures. Two populations of competitive antibodies were identified that labeled specifically the receptor-expressing cells in immunofluorescence and recognize distinct epitopes. Antibodies from both populations effectively prevented FGF-dependent internalization and nuclear accumulation of the receptor in cultured cells. This achievement indicates that these antibodies have a capacity to modulate the receptor physiology and, therefore, constitute powerful reagents for basic research and a potential lead for therapeutic applications.  相似文献   

14.
Insulin-like growth factor 1 receptor ( IGF1R ) is essential for the signalling of growth. In this study, we performed single nucleotide polymorphism (SNP) detection in the Japanese quail IGF1R coding region and an association study between SNPs and body weight in two lines (SS and LL) selected for large and small body weight. Of 21 SNPs obtained, a SNP at position AB292766:c.2293G>A led to the replacement of a valine with an isoleucine (V765I). The two lines were fixed for alternate alleles, with allele encoding valine fixed in the LL line. A significant effect of the SNP genotype was found on 10-week body weight ( P  < 0.01) and on 4- to 10-week and 6- to 10-week average daily gain ( P  < 0.05) in the F2 family obtained from lines LL and SS. In six populations maintained in Japan or France, the frequency of allele encoding valine was higher than the allele encoding isoleucine.  相似文献   

15.
16.
17.
Qian Q  Chen Z  Ma G  Jiang Y  Feng Y  Shen C  Yao Y  Ding J  Dai Q  Li Y 《Molecular biology reports》2009,36(6):1257-1261
Background Inflammation plays an important role in coronary artery disease (CAD). Complement Factor H (CFH) gene has been analyzed in relation to CAD in several studies with conflicting results. The aim of the present study was to investigate the association between the CFH Y402H polymorphism and CAD in Chinese. Methods and results About 336 patients were enrolled, included 166 patients with CAD and 170 controls. The SNP at CFH Y402H was genotyped by ligase detection reaction and plasma levels of CFH were assayed by enzyme-linked immunosorbent assay. Analysis of genotype frequencies did not reveal any significant difference between CAD patients and controls. There were significant differences in the frequencies of C allele and C allele carriers between early-onset CAD and controls. After adjustment of clinical parameters, significant association was identified for CFH Y402H polymorphism, with C allele carriers having a higher risk of early-onset CAD than carriers of TT genotype (odds ratio [OR] 4.66, 95% CI: 1.23–17.62, = 0.02). There was no difference of plasma CFH levels between CAD group and controls. Conclusions CFH Y402H polymorphism is associated with early-onset CAD in Chinese. Qi Qian and Zhong Chen have contributed equally to this paper.  相似文献   

18.
Myopia has become a major public health issue worldwide. Identification of genetic loci related to myopia in young children may advance our knowledge of the pathogenesis of myopia. Fibroblast growth factor 10 (FGF10) plays essential roles for the development of myopia through modulating extracellular matrix-associated genes. Studies revealed that genetic variants of FGF10 were associated with extreme myopia in adults. However, their associations with susceptibility of myopia in young children, which are less affected by confounding factors and more suitable for studying genetic factors of myopia, have not been explored. In the current study, we evaluated 13 tagSNPs that captured 100% of genetic variation in the FGF10 gene region for their associations with myopia in a large Chinese case-control study with 900 myopia children and 900 nonmyopia children. We found rs2973644 was significantly associated with increased risk of myopia (odds ratio [OR]: 1.26; 95% confidence intervals [CI]: 1.06-1.49; P = 0.009). furthermore, rs339501 (OR: 1.73; 95% CI: 1.18-2.53; P = 0.005), rs2973644 (OR: 1.57; 95% CI: 1.13-2.19; P = 0.007), and rs79002828 (OR: 1.83; 95% CI: 1.20-2.77; P = 0.005) were significantly associated with increased risk of high myopia in young children. Functional assessment of rs2973644 by luciferase assays revealed the risk G allele causes a higher expression level of FGF10 than the protective A allele. Our results do support that genetic variants of cytokine FGF10 are associated with susceptibility of myopia (as well as high myopia) in young children and further exploration are needed for myopia in children.  相似文献   

19.
Autism is a pervasive neurodevelopmental disorder diagnosed in early childhood. Growth factors have been found to play a key role in the cellular differentiation and proliferation of the central and peripheral nervous systems. Epidermal growth factor (EGF) is detected in several regions of the developing and adult brain, where, it enhances the differentiation, maturation, and survival of a variety of neurons. Transforming growth factor-beta (TGFbeta) isoforms play an important role in neuronal survival, and the hepatocyte growth factor (HGF) has been shown to exhibit neurotrophic activity. We examined the association of EGF, TGFbeta1, and HGF genes with autism, in a trio association study, using DNA samples from families recruited to the Autism Genetic Resource Exchange; 252 trios with a male offspring scored for autism were selected for the study. Transmission disequilibrium test revealed significant haplotypic association of EGF with autism. No significant SNP or haplotypic associations were observed for TGFbeta1 or HGF. Given the role of EGF in brain and neuronal development, we suggest a possible role of EGF in the pathogenesis of autism.  相似文献   

20.
ATP-binding cassette transporter A1 (ABCA1) has a crucial role in removing intracellular cholesterol and plays a protective role against atherosclerosis. Therefore, genetic polymorphisms in this gene may alter the susceptibility to coronary artery disease (CAD). This study was aimed to examine the association of rs2230806 (c.1051 G > A; p.R219K) variation in the ABCA1 gene with CAD in a case-control design which was followed by a meta-analysis and in silico approach. In the case-control study, 300 subjects including 150 individuals with CAD and 150 healthy controls were recruited. The c.1051 G > A genotyping was done by polymerase chain reaction-restriction fragment length polymorphism method. In the meta-analysis, eligible studies were collected from PubMed, Google Scholar, and ScienceDirect databases and pooled odds ratio, heterogeneity, publication bias, and sensitivity analyses were carried. Finally, some bioinformatics tools were employed to assess the impacts of p.R219K variation on ABCA1 protein structure. Our case-control examination showed a statistically significant association between c.1051 G > A genetic polymorphism and CAD risk. In addition, the meta-analysis showed reliable significant associations between c.1051 G > A transition and risk of CAD in the Caucasian population. In silico analysis showed that the p.R219K substitution could alter the secondary structure, hydrophobicity pattern, and Ramachandran plot of ABCA1. These findings elucidate that the c.1051 G > A variation could be a genetic risk factor for CAD and it could be considered as a prognostic and predictive biomarker for susceptible individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号