首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The anti-cancer drug cisplatin induces apoptosis by damaging DNA. Since a stilbene-derivative blocker of Cl/HCO3 exchangers and Cl channels, SITS, is known to induce cisplatin resistance in a manner independent of intracellular pH and extracellular HCO3, we investigated the relation between cisplatin-induced apoptosis and Cl channel activity in human adenocarcinoma KB cells. A stilbene derivative, DIDS, reduced cisplatin-induced caspase-3 activation and cell death, which were detected over 18 h after treatment with cisplatin. DIDS was also found to reduce sensitivity of KB cells to 5-day exposure to cisplatin. Whole-cell patch-clamp recordings showed that KB cells functionally express volume-sensitive outwardly rectifying (VSOR) Cl channels which are activated by osmotic cell swelling and sensitive to DIDS. Pretreatment of the cells with cisplatin for 12 h augmented the magnitude of VSOR Cl current. Thus, it is concluded that cisplatin-induced cytotoxicity in KB cells is associated with augmented activity of a DIDS-sensitive VSOR Cl channel and that blockade of this channel is, at least in part, responsible for cisplatin resistance induced by a stilbene derivative.  相似文献   

2.
Apoptotic cell death in mammalian models is frequently associated with cell shrinkage. Inhibition of apoptotic volume decrease (AVD) is cytoprotective, suggesting that cell shrinkage is an important early event in apoptosis. In salmonid hepatoma and gill cells staurosporine induced apoptosis, as assessed by activation of effector caspases, nuclear condensation, and a decrease of mitochondrial membrane potential (MMP), and these changes were accompanied by cell shrinkage. The Cl transport inhibitor DIDS and the K+ channel inhibitor quinidine prevented AVD, but only DIDS inhibited apoptosis. Other Cl flux inhibitors, as well as a pan-caspase inhibitor, did not prevent cell shrinkage, but still prevented caspase activation. Furthermore, regulatory volume decrease (RVD) under hypotonic conditions was not facilitated, but diminished in apoptotic cells. Since all transport inhibitors used blocked RVD, but only DIDS and quinidine inhibited AVD, the ion transporters involved in both processes are apparently not identical. In addition, our data indicate that inhibition of Cl fluxes rather than blocking cell shrinkage or K+ fluxes is important for preventing apoptosis. In line with this, inhibition of MAP kinases reduced RVD and not AVD, but still diminished caspase activation. Finally, we observed that MAP kinases were activated upon staurosporine treatment and that at least activation of ERK was prevented when AVD was inhibited.  相似文献   

3.
M Shen  L Wang  B Wang  T Wang  G Yang  L Shen  T Wang  X Guo  Y Liu  Y Xia  L Jia  X Wang 《Cell death & disease》2014,5(11):e1528
Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl channel by 4,4''-diisothiocya-natostilbene-2,2''-disulfonic acid (DIDS), a non-selective Cl channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl channel blockers against ER stress-associated cardiac anomalies.The endoplasmic reticulum (ER) is characterized as an organelle that participates in the folding of membrane and secretory proteins.1,2 Efficient functioning of the endoplasmic reticulum is important for cell function and survival. Perturbations of ER homeostasis by energy deprivation and glucose,3 viral infections4 and accumulation of misfolded and/or unfolded proteins2 interfere with ER function, leading to a state of ER stress.5, 6, 7 A cohort of chemicals, for example, tunicamycin and thapsigargin, also trigger ER stress.8, 9, 10 Thapsigargin disrupts the calcium storage of ER by blocking calcium reuptake into the ER lumen, thus by depleting calcium from the organelle.11 In particular, tunicamycin is a highly specific ER stress inducer by inhibiting N-linked glycosylation of protein, representing a well-documented method to artificially elicit unfolded protein response.8 In response to ER stress, ER chaperones such as glucose-regulated protein 78 kDa (GRP78) and glucose-regulated protein 94 kDa (GRP94) are upregulated to facilitate the recovery of unfolded or misfolded proteins.12 ER stress may act as a defense mechanism against external insults; however, prolonged and/or severe ER stress may ultimately trigger apoptosis.8 The C/EBP homologous protein (CHOP) has been defined as a pivotal mediator of cell death signaling in ER stress.13, 14 Accumulating evidence has demonstrated that ER stress-induced cell death is an essential step in the pathogenesis of a wide variety of cardiovascular diseases such as ischemia reperfusion heart diseases,15 atherosclerosis,5, 16, 17, 18 myocardial infarction,19 hypertension20, 21 and heart failure.8, 22, 23 Inhibiting ER stress has great therapeutic values for cardiac anomalies. However, the precise mechanism involved in ER stress-induced cardiovascular diseases has not been well identified, which impedes the translation of our understanding of ER stress-induced cardiovascular anomalies into effective therapeutic strategies. Apoptosis induction requires persistent cell shrinkage, named apoptotic volume decrease (AVD).24, 25, 26, 27 It is an early prerequisite for the activation of caspases.24 In various types of cells including cardiomyocytes, AVD process is accomplished by the activation of volume-sensitive outwardly rectifying (VSOR) Cl channel and is concomitant with the egress of water from the cells undergoing mitochondrion-initiated or death receptor-induced apoptosis.25, 28, 29, 30 Although inhibition of VSOR Cl channel by DIDS (4,4''-diisothiocyanatostilbene-2,2''-disulphonic acid) and DCPIB (4-(2-butyl-6,7- dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid) blocked AVD and rescued cardiomyocytes from mitochondrial and death receptor pathway-induced apoptosis,31, 32 it remains largely unknown concerning the role of VSOR Cl channel and how it is regulated in ER stress-induced apoptotic cardiomyocyte death.Emerging evidence indicates that Wnt signal pathways are found to be anti-apoptotic in the cardiovascular diseases,33, 34, 35 regulating crucial aspects of cardiovascular biology. However, up to now, its activity in ER stress-induced apoptosis and in the process of AVD in cardiomyocytes remains elusive.In the present study, we probed the role of VSOR Cl channel in ER stress-induced apoptosis of cardiomyocytes, which intimately correlates with cardiac contractile dysfunction (CCD). We hypothesized that VSOR Cl channel controls the process of AVD occurring concomitantly with ER stress-induced apoptosis of cardiomyocytes. To test this hypothesis, we investigated VSOR Cl currents in cardiomyocytes treated with the ER stress inducer tunicamycin. The pathophysiological role of VSOR Cl channel and the potential signaling mechanisms in the development of ER stress-induced apoptosis in CCD were also dissected.  相似文献   

4.
Cell volume can be altered by two different ways, swelling and shrinkage. Cell swelling is regulated by volume-regulated Cl channel (VRC). It is not well understood whether shrinkage is regulated by VRC. We previously found that antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) prevented cell proliferation, which was related to cell swell volume regulation. In the present study, we further studied the role of ClC-3 Cl channel in cell apoptosis which was related to cell shrinkage volume regulation by using antisense oligonucleotide specific to ClC-3 (ClC-3 antisense) and ClC-3 cDNA transfection techniques. We found that thapsigargin (TG), a specific inhibitor of the endoplasmic reticulum calcium ATPase, evoked apoptotic morphological changes (including cytoplasmic blebbing, condensation of nuclear chromatin, and the formation of apoptotic bodies), DNA laddering, and caspase-3 activation in PC12 cells (Pheochromocytoma-derived cell line). TG increased the cell apoptotic population with a decrease in cell viability. These effects were consistent with the decrease in endogenous ClC-3 protein expression, which was also induced by TG. Overexpression of ClC-3 significantly inhibited TG effect on PC12 cell apoptosis, whereas the ClC-3 antisense produced opposite effects and facilitated apoptosis induced by TG. Our data strongly suggest that ClC-3 channel in PC12 cells mediates TG-induced apoptotic process through inhibitory mechanism. Thus, it appears that ClC-3 Cl channel mediates both cell proliferation and apoptosis through accelerative and inhibitory fashions, respectively. These authors contributed equally to this work.  相似文献   

5.
This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o−1. Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (Tc), as an index of cell volume, whereas 86Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H2O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral 86Rb efflux markedly increased during the hyposmotic shock, from 0.50 ± 0.03 min−1 to a peak value of 6.32 ± 0.07 min−1, while apical 86Rb efflux was negligible. Channel blockers, such as GdCl3 (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 μM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 μM) and genistein (150 μM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in 86Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K+ and Cl−1 efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral 86Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl−1 from 16HBE14o−1 cells in response to cell swelling determines RVD efficiency.  相似文献   

6.
An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), τc = 19 min. In contrast, a hypotonic challenge induced a rapid (τc = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24°C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 μM), ouabain (1 mM), DIDS (1 mM), EIPA (100 μM), or Na+-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl channel and K+-Cl cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 μM), high K+ (20 mM) or Cl-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na+-K+-2Cl cotransporter (Na+-K+-2Cl) and the Na+-K+ pump. Inhibition of K+ and Cl channels and KCC but not Na+-K+-2Cl affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.  相似文献   

7.
We previously showed that activation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl conductance (gCFTR) supports parallel activation of amiloride-sensitive epithelial Na+ channel (ENaC) in the native human sweat duct. However, it is not clear whether phosphorylated CFTR, phosphorylated ENaC, or only Cl -channel function is required for activation. We used basilaterally α-toxin-permeabilized human sweat ducts to test the hypothesis that ENaC activation depends only on Cl -channel function and not on phosphorylation of either CFTR or ENaC. CFTR is classically activated by PKA plus millimolar ATP, but cytosolic glutamate activation of gCFTR is independent of ATP and phosphorylation. We show here that both phosphorylation-dependent (PKA) and phosphorylation-independent (glutamate) activation of CFTR Cl channel function support gENaC activation. We tested whether cytosolic application of 5 mM ATP alone, phosphorylation by cAMP, cGMP, G-protein dependent kinases (all in the presence of 100 μM ATP), or glutamate could support ENaC activation in the absence of gCFTR. We found that none of these agonists activated gENaC by themselves when Cl current ( ) through CFTR was blocked by: 1) Cl removal, 2) DIDS inhibition, 3) lowering the ATP concentration to 100 μM (instead of 5 mM required to support CFTR channel function), or 4) mutant CFTR (homozygous ΔF508 CF ducts). However, Cl gradients in the direction of absorption supported, while Cl gradients in the direction of secretion prevented ENaC activation. We conclude that the interaction between CFTR and ENaC is dependent on activated through CFTR in the direction of absorption (Cl gradient from lumen to cell). But such activation of ENaC is independent of phosphorylation and ATP. However, reversing through CFTR in the direction of secretion (Cl gradient from cell to lumen) prevents ENaC activation even in the presence of through CFTR. An erratum to this article is available at .  相似文献   

8.
The possible correlation between P-glycoprotein (PGP) and volume-sensitive Cl channel was examined in a pair of cell lines: a subline of the human epidermoid KB cell (KB-3-1) and the corresponding MDR1-transfected cell line (KB-G2). Western blot analysis and indirect immunofluorescence studies indicated that KB-G2, but not KB-3-1, exhibits the PGP expression. Patch-clamp whole-cell recordings showed that osmotic swelling activates Cl currents not only in PGP-expressing but also in PGP-lacking cells. The amplitude of the maximal current was indistinguishable between both cells. Activation of protein kinase C (PKC) or loading with a PKC inhibitor failed to affect the swelling-induced activation of the Cl currents in both cells. The relation between whole-cell Cl currents and cell size measured simultaneously showed that volume sensitivity of the Cl channel was augmented by the PGP expression irrespective of the activity of PKC on the plasma membrane. A similar increase in volume sensitivity of the Cl channel was also induced by the expression of the ATP hydrolysis-deficient PGP mutant, K433M. We conclude that P-glycoprotein does not represent the volume-sensitive Cl channel but that its expression modulates volume sensitivity of the Cl channel in a manner independent of its ATPase activity or of the protein kinase C activity. Received: 25 September 1996/Revised: 12 December 1996  相似文献   

9.
The presence of basolateral Cl channels in airway epithelium has been reported in several studies, but little is known about their role in the regulation of anion secretion. The purpose of this study was to characterize regulation of these channels by nitric oxide (NO) in Calu-3 cells. Transepithelial measurements revealed that NO donors activated a basolateral Cl conductance sensitive to 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and anthracene-9-carboxylic acid. Apical membrane permeabilization studies confirmed the basolateral localization of NO-activated Cl channels. Experiments using 8-bromo cyclic guanosine monophosphate (8Br-cGMP) and selective inhibitors of soluble guanylyl cyclase and inducible NO synthase (1H-[1, 2, 4] oxadiazolol-[4, 3-a] quinoxalin-1-one [ODQ] and 1400W [N-(3-Aminomethyl)benzyl)acetamidine], respectively) demonstrated that NO activated Cl channels via a cGMP-dependent pathway. Anion replacement and 36Cl flux studies showed that NO affected both Cl and HCO 3 secretion. Two different types of Cl channels are known to be present in the basolateral membrane of epithelial cells: Zn2+-sensitive ClC-2 and DIDS-sensitive bestrophin channels. S-Nitrosoglutathione (GSNO) activated Cl conductance in the presence of Zn2+ ions, indicating that ClC-2 channel function was not affected by GSNO. In contrast, DIDS completely inhibited GSNO-activated Cl conductance. Bestrophin immunoprecipitation studies showed that under control conditions bestrophin channels were not phosphorylated but became phosphorylated after GSNO treatment. The presence of bestrophin in airway epithelia was confirmed using immunohistochemistry. We conclude that basolateral Cl channels play a major role in the NO-dependent regulation of anion secretion in Calu-3 cells.  相似文献   

10.
In our previous study, it was suggested that ANP and cGMP may increase Na+ absorption in the urinary bladder of the Japanese tree frog, Hyla japonica. Thus, Na+ transport activated by ANP was investigated electrophysiologically by using a cell-attached patch-clamp technique in freshly isolated cells from the urinary bladder. A predominant channel expressed was a low conductance Na+ channel in the epithelial cells. The channel exhibited conductance for inward currents of 4.9 ± 0.2 pS, long open and closed times (c.a. 190 ms), and positive reversal potential. The channel activity was decreased under the pipette solution including 10−6 M amiloride. These characteristics were similar to those of amiloride-sensitive Na+ channels (ENaC). Addition of 10−9 M ANP activated and significantly increased the ENaC activity from 0.58 ± 0.09 to 1.47 ± 0.34. On the other hand, mean amplitudes and conductance of single channel did not change significantly after the addition of ANP. Addition of 10−5 M 8-Br-cGMP also activated the ENaC and significantly increased the channel activity from 0.56 ± 0.10 to 2.00 ± 0.33. The addition of ANP failed to activate the ENaC in the presence of 10−6 M amiloride. These results suggested that ANP and cGMP activate Na+ transport via ENaC in the epithelial cells of frog urinary bladder.  相似文献   

11.
The SLC26 gene family encodes anion transporters with diverse functional attributes: (a) anion exchanger, (b) anion sensor, and (c) anion conductance (likely channel). We have cloned and studied Slc26a9, a paralogue expressed mostly in lung and stomach. Immunohistochemistry shows that Slc26a9 is present at apical and intracellular membranes of lung and stomach epithelia. Using expression in Xenopus laevis oocytes and ion-sensitive microelectrodes, we discovered that Slc26a9 has a novel function not found in any other Slc26 proteins: cation coupling. Intracellular pH and voltage measurements show that Slc26a9 is a nCl-HCO3 exchanger, suggesting roles in gastric HCl secretion or pulmonary HCO3 secretion; Na+ electrodes and uptakes reveal that Slc26a9 has a cation dependence. Single-channel measurements indicate that Slc26a9 displays discrete open and closed states. These experiments show that Slc26a9 has three discrete physiological modes: nCl-HCO3 exchanger, Cl channel, and Na+-anion cotransporter. Thus, the Slc26a9 transporter channel is uniquely suited for dynamic and tissue-specific physiology or regulation in epithelial tissues. Min-Hwang Chang, Consuelo Plata, and Kambiz Zandi-Nejad have contributed equally to this work.  相似文献   

12.
ATP serves not only as an energy source for all cell types but as an ‘extracellular messenger’ for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg2+ and/or H+ salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP4− in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed.  相似文献   

13.
An ion channel activated by hyperpolarization was identified in excised patches of bovine pigmented ciliary epithelial cells using the single channel patch clamp technique. In symmetrical NaGluconate, the channel had a maximum conductance of 285 pS. The channel was characterized by frequent flickery transitions between the fully open and closed levels. The channel did not discriminate very clearly between anions and cations; when the cytoplasmic face of excised patches was bathed in a dilute NaCl solution, the channel had a chloride-to-sodium permeability ratio (P Cl/P Na) of 1.3. However, the channel showed a small anion selectivity (P Cl/P Na= 3.7) when bathed in a concentrated NaCl solution. Gd3+ blocked the channel reversibly. Channel kinetics were characterised by slow (≈ min) voltage-dependent activation and inactivation rate constants. The channel was most active in the range −60 to −140 mV and showed a peak at −120 mV. A similar time- and voltage-dependent activation was also observed in cell-attached recordings. In conclusion, hyperpolarization of pigmented ciliary epithelial cell membrane patches activated a large conductance, nonselective ion channel. This combination of nonselectivity and hyperpolarizing activation is consistent with the involvement of this channel in ion loading from the blood into pigmented ciliary epithelial cells—the first phase in the secretion of aqueous humor. Received: 30 June 1995/Revised: 16 November 1995  相似文献   

14.
Macroscopic and unitary currents through stretch-activated Cl channels were examined in isolated human atrial myocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ and Ca2+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+] i ) was reduced, application of positive pressure via the pipette activated membrane currents under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by 60 mV per 10-fold change in the external Cl concentration, indicating that the current was Cl selective. The current was inhibited by bath application of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 9-anthracenecarboxylic acid (9-AC). β-Adrenergic stimulation failed to activate a Cl current. In single channel recordings from outside-out patches, positive pressure in the pipette activated the unitary current with half-maximal activation of 14.7 mm Hg at +40 mV. The current-voltage relationship of single channel activity obtained in inside-out patches was linear in symmetrical Cl solution with the averaged slope conductance of 8.6 ± 0.7 pS (mean ±sd, n= 10). The reversal potential shift of the channel by changing Cl concentration was consistent with a Cl selective channel. The open time distribution was best described by a single exponential function with mean open lifetime of 80.4 ± 9.6 msec (n= 9), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 11.5 ± 2.2 msec (n= 9) and that for the slow component of 170.2 ± 21.8 msec (n= 9). Major changes in the single channel activity in response to pressure were caused by changes in the interburst interval. Single channel activity was inhibited by DIDS and 9-AC in a manner similar to whole-cell configuration. These results suggest that membrane stretch induced by applying pressure via the pipette activated a Cl current in human atrial myocytes. The current was sensitive to Cl channel blockers and exhibited membrane voltage-independent bursting opening without sensitive to β-adrenergic stimulation. Received: 21 October 1996/Revised: 17 December 1997  相似文献   

15.
The balance of K+, Na+, and Cl fluxes across the cell membrane with the Na+/K+ pump, ion channels, and Na+K+2Cl (NKCC) and Na+-Cl (NC) cotransport was calculated to determine the mechanism of cell shrinkage in apoptosis. It is shown that all unidirectional K+, Na+, and Cl fluxes; the ion channel permeability; and the membrane potential can be found using the principle of the flux balance if the following experimental data are known: K+, Na+, and Cl concentrations in cell water; total Cl flux; total K+ influx; and the ouabain-inhibited pump component of the Rb+(K+) influx. The change in different ionic pathways during apoptosis was estimated by calculations based on the data reported in the preceded paper (Yurinskaya et al., 2010). It is found that cell shrinkage and the shift in ion balance in U937 cells induced to apoptosis with 1 μM staurosporine occur due to the coupling of reduced pump activity with a decrease in the integral permeability of Na+ channels, whereas K+ and Cl channel permeability remains almost unchanged. Calculations show that only a small part of the total fluxes of K+, Na+, and Cl account for the fluxes mediated by NKCC and NC cotransporters. Despite the importance of cotransport fluxes for maintaining the nonequilibrium steady-state distribution of Cl, they cannot play a significant role in apoptotic cell shrinkage because of their minority and cannot be revealed by inhibitors.  相似文献   

16.
Ion Channels in Cell Proliferation and Apoptotic Cell Death   总被引:14,自引:0,他引:14  
Cell proliferation and apoptosis are paralleled by altered regulation of ion channels that play an active part in the signaling of those fundamental cellular mechanisms. Cell proliferation must - at some time point - increase cell volume and apoptosis is typically paralleled by cell shrinkage. Cell volume changes require the participation of ion transport across the cell membrane, including appropriate activity of Cl and K+ channels. Besides regulating cytosolic Cl activity, osmolyte flux and, thus, cell volume, most Cl channels allow HCO3 exit and cytosolic acidification, which inhibits cell proliferation and favors apoptosis. K+ exit through K+ channels may decrease intracellular K+ concentration, which in turn favors apoptotic cell death. K+ channel activity further maintains the cell membrane potential, a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may trigger mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The switch between cell proliferation and apoptosis apparently depends on the magnitude and temporal organization of Ca2+ entry and on the functional state of the cell. Due to complex interaction with other signaling pathways, a given ion channel may play a dual role in both cell proliferation and apoptosis. Thus, specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, considerable further experimental effort is required to fully understand the complex interplay between ion channels, cell proliferation and apoptosis.  相似文献   

17.
Removal of extracellular divalent cations activated a Cl channel in the plasma membrane of Xenopus laevis oocytes. This so-called Ca2+-inactivated Cl channel (CaIC) was present in every oocyte and was investigated using two-electrode whole-cell voltage clamp and single-channel patch-clamp techniques. Beside other Cl channel inhibitors, anthracene-9-carboxylic acid (9-AC) and 3′azido-3′deoxythymidine (AZT), a nucleoside analogue commonly used as an antiviral drug, blocked at least partly the CalC-mediated currents. Using the Cl-sensitive dye 6-methoxy-N-(sulfopropyl)quinolinium (SPQ) we could visualize the transport of Cl from the oocyte cytoplasm to the surrounding medium after activation of the CaIC by Ca2+ removal. In the absence of external Cl and Ca2+, the emission intensity of SPQ declined continuously, indicating a quenching of fluorescence by the efflux of Cl in the millimolar range. In the presence of external Ca2+, no emission changes could be observed during the same time period. Chelating external Ca2+ in absence of Cl immediately activated Ca2+-inactivated Cl channels leading to subsequent emission decrease of SPQ. Investigations on the selectivity of the CaIC revealed only poor discrimination between different anions. With single-channel measurements, we found an anion selectivity sequence I > Br > Cl≫ gluconate as it is also typical for maxi Cl channels. Contrary to the majority of all other transport systems of the Xenopus oocyte, which show reduced activity due to membrane depolarization or endocytotic removal of the transport protein from the plasma membrane during oocyte maturation, the CaIC remained active in maturated oocytes. Single-channel measurements on maturated oocytes, also known as eggs, showed the presence of Ca2+-inactivated Cl channels. However, this egg CaIC revealed an altered sensitivity to external Ca2+ concentrations. All these data confirm and extend our previous observations on the CaIC and give clear evidence that this channel is peculiar among all Cl channels described up to now. Received: 16 May 1996/Revised: 4 September 1996  相似文献   

18.
Single anion channels reconstituted from cardiac mitoplasts   总被引:4,自引:0,他引:4  
Ion channels from sheep cardiac mitoplast (inverted inner mitochondrial membrane vesicle) preparations were incorporated into voltage-clamped planar lipid bilayers. The appearance of anion rather than cation channels could be promoted by exposing the bilayers to osmotic gradients formed by Cl salts of large, relatively imperment, cations at a pH of 8.8. Two distinct activities were identified. These comprised a multisubstate anion channel of intermediate conductance (∼60 pS in 300vs. 50mm choline Cl, ∼100 pS in symmetric 150mm KCl), and a lower-conductance anion channel (∼25 or ∼50 pS in similar conditions), which only displayed two well-defined substates, at ∼25 and ∼50% of the fully open state. The larger channels were not simple multiples of the lower-conductance channels, but both discriminated poorly, and to a similar extent, between anions and cations (PCl /Pcholine + ∼12, PCl /PK +∼8). The lower-conductance channel was only minimally selective between different anions (PNO 3 (1.0)=PCl >PBr >PI >PSCN (0.8)), and its conductance failed to saturate even in high (>1.0 M) activities of KCl. The channels were not obviously voltage dependent, and they were unaffected by 0.5 mM SITS, H2O2, propranolol, quinine or amitriptyline, or by 2 mM ATP, or by variations in pH (5.5–8.8). Ca2+ and Mg2+ did not alter single channel activity, but did modify single current amplitudes in the lower-conductance channel. This effect, together with voltage-dependent substate behavior, is described in the following paper.  相似文献   

19.
The effects of aldosterone and vasopressin on Cl transport were investigated in a mouse cortical collecting duct (mpkCCD) cell line derived from a transgenic mouse carrying the SV40 large T antigen driven by the proximal regulatory sequences of the L-pyruvate kinase gene. The cells had features of a tight epithelium and expressed the amiloride-sensitive sodium channel and the cystic fibrosis transmembrane conductance regulator (CFTR) genes. dD-arginine vasopressin (dDAVP) caused a rapid, dose-dependent, increase in short-circuit current (I sc ). Experiments with ion channel blockers and apical ion substitution showed that the current represented amiloride-sensitive Na+ and 5-nitro-2-(3-phenylpropylamino)benzoate-sensitive and glibenclamide-sensitive Cl fluxes. Aldosterone (5 × 10−7 m for 3 or 24 hr) stimulated I sc and apical-to-basal 22Na+ flux by 3-fold. 36Cl flux studies showed that dDAVP and aldosterone stimulated net Cl reabsorption and that dDAVP potentiated the action of aldosterone on Cl transport. Whereas aldosterone affected only the apical-to-basal 36Cl flux, dDAVP mainly increased the apical-to-basal Cl flux and the basal-to-apical flux of Cl to a lesser extent. These results suggest that the discrete dDAVP-elicited Cl secretion involves the CFTR and that dDAVP and aldosterone may affect in different ways the observed increased Cl reabsorption in this model of mouse cultured cortical collecting duct cells. Received: 8 January 1998/Revised: 25 March 1998  相似文献   

20.
The rat primary cultured-airway monolayer had been an excellent model for deciphering the ion channel after nystatin permeabilization of its basolateral or apical membrane (Hwang et al., 1996). After apical membrane permeabilization of rat primary cultured-airway monolayer, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS)-sensitive outwardly rectifying depolarization-induced Cl (BORDIC) currents were observed across the basolateral membrane in symmetrical NMG-Cl solution in this study. No significant Cl current induced by the application of voltage clamping was observed across the apical membrane in symmetrical NMG-Cl solution after basolateral membrane permeabilization. The halide permeability sequence for BORDIC current was Br≒ I > Cl. BORDIC current was not affected by basolaterally applied bumetanide (0.5 mm). Basolateral DIDS (0.2 mm) but not apical DIDS inhibited CFTR mediated short-circuit current (I sc ) in an intact monolayer of rat airway epithelia, a T84 human colonal epithelial cell line, and a Calu-3 human airway epithelial cell line. This is the first report showing that depolarization induced Cl current is present on the basolateral membrane of airway epithelia. Received: 7 October 1999/Revised: 24 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号