首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The received view of protective coloration in animals is thatconspicuous colors and patterns have evolved because they elicitavoidance behavior in potential predators. In the present study,we examine the spontaneous response of naive predators (Gallusgallus domesticus) to artificial prey to test the hypothesisthat deviations from bilateral symmetry of signaling patternelements may negatively influence the avoidance-inducing effectof conspicuous color patterns. Chicks displayed stronger aversionsto artificial "butterfly" prey items possessing symmetric colorpattern elements than to those possessing asymmetric signalswith pattern elements of different color or shape. Althoughthey attacked signals with a size asymmetry of 5% at the samerate as symmetric signals, signals with a size asymmetry of7.5% or more were attacked more often than were symmetric signals.These results suggest that the protective value of conspicuouscolor patterns is impaired by asymmetry in color, shape, andsize of color pattern elements. Our findings also argue againstthe notion that animals have inherent preferences for symmetricover asymmetric objects, and demonstrate the existence of athreshold for asymmetry detection, beyond which further incrementsin asymmetry have no influence on signal efficacy.  相似文献   

2.
Both cryptic and aposematic colour patterns can reduce predation risk to prey. These distinct strategies may not be mutually exclusive, because the impact of prey coloration depends on a predator's sensory system and cognition and on the environmental background. Determining whether prey signals are cryptic or aposematic is a prerequisite for understanding the ecological and evolutionary implications of predator–prey interactions. This study investigates whether coloration and pattern in an exceptionally polymorphic toad, Rhinella alata, from Barro Colorado Island, Panama reduces predation via background matching, disruptive coloration, and/or aposematic signaling. When clay model replicas of R. alata were placed on leaf litter, the model's dorsal pattern – but not its colour – affected attack rates by birds. When models were placed on white paper, patterned and un‐patterned replicas had similar attack rates by birds. These results indicate that dorsal patterns in R. alata are functionally cryptic and emphasize the potential effectiveness of disruptive coloration in a vertebrate taxon.  相似文献   

3.
Warning (aposematic) and cryptic colorations appear to be mutually incompatible because the primary function of the former is to increase detectability, whereas the function of the latter is to decrease it. Disruptive coloration is a type of crypsis in which the color pattern breaks up the outline of the prey, thus hindering its detection. This delusion can work even when the prey's pattern elements are highly contrasting; thus, it is possible for an animal's coloration to combine both warning and disruptive functions. The coloration of the wood tiger moth (Parasemia plantaginis) is such that the moth is conspicuous when it rests on vegetation, but when it feigns death and drops to the grass‐ and litter‐covered ground, it is hard to detect. This death‐feigning behavior therefore immediately switches the function of its coloration from signaling to camouflage. We experimentally tested whether the forewing patterning of wood tiger moths could function as disruptive coloration against certain backgrounds. Using actual forewing patterns of wood tiger moths, we crafted artificial paper moths and placed them on a background image resembling a natural litter and grass background. We manipulated the disruptiveness of the wing pattern so that all (marginal pattern) or none (nonmarginal pattern) of the markings extended to the edge of the wing. Paper moths, each with a hidden palatable food item, were offered to great tits (Parus major) in a large aviary where the birds could search for and attack the “moths” according to their detectability. The results showed that prey items with the disruptive marginal pattern were attacked less often than prey without it. However, the disruptive function was apparent only when the prey was brighter than the background. These results suggest that warning coloration and disruptive coloration can work in concert and that the moth, by feigning death, can switch the function of its coloration from warning to disruptive.  相似文献   

4.
Protective coloration is a well-known predator avoidance strategy in prey species. Aposematic species often display a contrasting color pattern consisting of dark spots of different shapes and sizes on a bright background coloration. Both elements, background color and spots are expected to serve different purposes. While the ecological function of the bright coloration has been addressed in many studies, the question of whether the interaction with differently sized spots influences predator behavior has received less attention by researchers. In a lowland rain forest in Costa Rica we used 2700 clay models that imitated the polytypic strawberry poison frog (Oophaga pumilio) as a proxy for an aposematic prey species. We manipulated the dorsal color pattern by using a local and a non-local aposematic and a non-local cryptic background color and combined them with black spots increasing in size (none, small, medium, large). The major objective was to test if spot size alters the survival rate of differently colored models. Background coloration and spot size were significant predictors of being attacked. However, the interaction between both effects was not. During five trials predators avoided the non-local aposematic color morph and did not discriminate between local aposematic and non-local cryptic models. Spot size and attack rate were negatively linear correlated which suggests that predator selection promotes the evolution of dark spots. We further conclude that spot size matters in a contrasting color pattern and plays an important role in predator avoidance.  相似文献   

5.
Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator’s ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators’ direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.  相似文献   

6.
The signalling role of asymmetry has attracted considerable recent interest among evolutionary biologists. Although it has been studied primarily within the context of sexual selection, symmetry of signals may play a role also in inter-specific communication, such as predator–prey interactions. Both theory and experimental evidence suggest that asymmetry may impair the efficacy of visual warning signals used to deter potential predators, but increase the protective value of non-signalling, cryptic colour patterns used to decrease the risk of detection. Here we tested the prediction from this hypothesis by means of intra-individual comparisons of asymmetry in colour pattern elements in three species of moths (Arctia caja (L.), Noctua orbona (L.), Smerinthus ocellata (L.)) that possess cryptic fore wing patterns and signalling hind wing patterns. Mean asymmetries constituted 4.3% (range 2.1–7.0%) of trait size for colour pattern elements, whereas individual asymmetry levels reached as high as 26%. Asymmetry tended to be somewhat larger in cryptic patterns on fore wings than in signalling patterns on hind wings in five of six comparisons, but in only one case was the difference statistically significant. In addition, pattern elements were somewhat more asymmetric on fore wings also in Saturnia pavonia (L.), which possesses identical signalling eyespots on both fore and hind wings. The relatively low levels of asymmetry also in cryptic patterns imply either that selection does not favour increased asymmetry in cryptic patterns, or that the evolution of pronounced asymmetry is developmentally or genetically constrained.  相似文献   

7.
We studied selection by predators for cryptic prey coloration in a visually heterogeneous habitat that consists of two microhabitats. It has been suggested that the probability of escaping detection in such habitats might be optimized by maximizing crypsis in one of the microhabitats. However, a recent model indicates that a coloration that compromises the requirements of different microhabitats might sometimes be the optimal solution. To experimentally study these hypotheses, we allowed great tits (Parus major L.) to search for artificial prey items in two different microhabitats (background boards): small patterned and large patterned. On each board there was one prey item that was either small-patterned, large-patterned or medium-patterned and thus compromised. Search time was used as the measure of crypsis and was on average longer on the large-patterned than on the small-patterned background. On the small-patterned background, the small-patterned prey was more cryptic than the compromised prey, which was in turn more cryptic than the large-patterned prey. On the large-patterned background, the small-patterned prey was least cryptic, but the compromised prey did not differ significantly from the large-patterned prey. The compromised coloration had lower predation risk than the matching colorations. This indicates that in some conditions a compromised coloration might be the best strategy for the prey and has important implications for the study of animal coloration.  相似文献   

8.
Cryptic coloration is an adaptative defensive mechanism against predators. Color patterns can become cryptic through background coloration‐matching and disruptive coloration. Disruptive coloration may evolve in visually heterogeneous microhabitats, whereas background matching could be favored in chromatically homogeneous microhabitats. In this work, we used digital photography to explore the potential use of disruptive coloration and background matching in males and females of two grasshopper species of the Sphenarium genus in different habitats. We found chromatic differences in the two grasshopper species that may be explained by local adaptation. We also found that the females and males of both species are dichromatic and seem to follow different color cryptic strategies, males are more disruptive than females, whereas females have a high background matching with less disruptive elements. The selective pressures of the predators in different microhabitats and the differences in mobility between sexes may explain the color pattern divergence between females and males. Nevertheless, more field experiments are needed in order to understand the relative importance of disruptive and background matching coloration in the evolution of sexual dichromatism in these grasshoppers.  相似文献   

9.
Natural selection shapes the evolution of anti-predator defences, such as camouflage. It is currently contentious whether crypsis and disruptive coloration are alternative mechanisms of camouflage or whether they are interrelated anti-predator defences. Disruptively coloured prey is characterized by highly contrasting patterns to conceal the body shape, whereas cryptic prey minimizes the contrasts to background. Determining bird predation of artificial moths, we found that moths which were dissimilar from the background but sported disruptive patterns on the edge of their wings survived better in heterogeneous habitats than did moths with the same patterns inside of the wings and better than cryptic moths. Despite lower contrasts to background, crypsis did not provide fitness benefits over disruptive coloration on the body outline. We conclude that disruptive coloration on the edge camouflages its bearer independent of background matching. We suggest that this result is explainable because disruptive coloration is effective by exploiting predators' cognitive mechanisms of prey recognition and not their sensory mechanisms of signal detection. Relative to disruptive patterns on the body outline, disruptive markings on the body interior are less effective. Camouflage owing to disruptive coloration on the body interior is background-specific and is as effective as crypsis in heterogeneous habitats. Hence, we hypothesize that two proximate mechanisms explain the diversity of visual anti-predator defences. First, disruptive coloration on the body outline provides camouflage independent of the background. Second, background matching and disruptive coloration on the body interior provide camouflage, but their protection is background-specific.  相似文献   

10.
Antagonistic interactions between predators and prey often lead to co‐evolution. In the case of toxic prey, aposematic colours act as warning signals for predators and play a protective role. Evolutionary convergence in colour patterns among toxic prey evolves due to positive density‐dependent selection and the benefits of mutual resemblance in spreading the mortality cost of educating predators over a larger prey assemblage. Comimetic species evolve highly similar colour patterns, but such convergence may interfere with intraspecific signalling and recognition in the prey community, especially for species involved in polymorphic mimicry. Using spectrophotometry measures, we investigated the variation in wing coloration among comimetic butterflies from distantly related lineages. We focused on seven morphs of the polymorphic species Heliconius numata and the seven corresponding comimetic species from the genus Melinaea. Significant differences in the yellow, orange and black patches of the wing were detected between genera. Perceptions of these cryptic differences by bird and butterfly observers were then estimated using models of animal vision based on physiological data. Our results showed that the most strikingly perceived differences were obtained for the contrast of yellow against a black background. The capacity to discriminate between comimetic genera based on this colour contrast was also evaluated to be higher for butterflies than for birds, suggesting that this variation in colour, likely undetectable to birds, might be used by butterflies for distinguishing mating partners without losing the benefits of mimicry. The evolution of wing colour in mimetic butterflies might thus be shaped by the opposite selective pressures exerted by predation and species recognition.  相似文献   

11.
Perception of the body's outline and three-dimensional shape arises from visual cues such as shading, contour, perspective and texture. When a uniformly coloured prey animal is illuminated from above by sunlight, a shadow may be cast on the body, generating a brightness contrast between the dorsal and ventral surfaces. For animals such as caterpillars, which live among flat leaves, a difference in reflectance over the body surface may degrade the degree of background matching and provide cues to shape from shading. This may make otherwise cryptic prey more conspicuous to visually hunting predators. Cryptically coloured prey are expected to match their substrate in colour, pattern and texture (though disruptive patterning is an exception), but they may also abolish self-shadowing and therefore either reduce shape cues or maintain their degree of background matching through countershading: a gradation of pigment on the body of an animal so that the surface closest to illumination is darker. In this study, we report the results from a series of field experiments where artificial prey resembling lepidopteran larvae were presented on the upper surfaces of beech tree branches so that they could be viewed by free-living birds. We demonstrate that countershading is superior to uniform coloration in terms of reducing attack by free-living predators. This result persisted even when we fixed prey to the underside of branches, simulating the resting position of many tree-living caterpillars. Our experiments provide the first demonstration, in an ecologically valid visual context, that shadowing on bodies (such as lepidopteran larvae) provides cues that visually hunting predators use to detect potential prey species, and that countershading counterbalances shadowing to enhance cryptic protection.  相似文献   

12.
Two, logically distinct but sometimes compatible, mechanismsof camouflage are background-matching and disruptive coloration.In the former, an animal's coloration comprises a random sampleof the background, and so target–background discriminationis impeded. In the latter, object or feature recognition iscompromised by placing bold, high-contrast colors so that theybreak up the prey's body into apparently unconnected objects.Recent experimental evidence for the utility of disruptive colors,above and beyond that conferred by background matching, hasbeen based on artificial prey with patterns lacking a planeof symmetry. However, it is plausible that the bilateral symmetrypresent in natural prey may compromise the efficiency of disruptivecoloration, on account of the potency of symmetry as a cue invisual search. In this study, we tested this prediction in thefield, by tracking the "survival" under bird predation of artificialmothlike targets placed on oak trees. These had background-matchingcolor patches placed either disruptively or nondisruptivelyand with or without bilateral symmetry. We found that symmetryreduced the effectiveness of both nondisruptive and disruptivebackground-matching coloration to a similar degree so that thenegative effects of symmetry on concealment are no greater fordisruptive than nondisruptive patterns.  相似文献   

13.
Recently there has been debate over the importance of innateavoidance of aposematic prey by predators, particularly birds.There is evidence that the predators have innate or unlearned,thus, inherited avoidance against certain colors, but whetherthere is any innate avoidance against gregariousness or conspicuousnessis unclear. Previously predator behavior toward these charactersof aposematic prey have been tested in separate experiments.We designed an experiment to separate inheritance toward color,gregariousness, and conspiucuosness. We simultaneously offeredthe predators warningly colored and nonwarningly colored preyitems, both aggregated and solitary, on white (conspicuous)or brown (cryptic) backgrounds. The predators we used were naive (handraised), wild-caught yearling and adult great tits (Parus major L.).The results confirm previous results regarding the innate avoidanceof color. Naive predators seemed to have a genetically or culturallytransmitted avoidance of yellow and black prey compared to brownprey. Surprisingly, yearling wild-caught great tits were moreselective than adults, which did not show as strong avoidanceof yellow and black prey. More importantly, birds did not findgregarious prey more aversive than single prey, which indicatesthat grouping alone does not serve as an innate avoidance signal.Conspicuousness itself was not aversive to the predators. Ourresults suggest that the avoidance against a particular colorpattern probably has an inherited basis, whereas gregariousand conspicuous characters of prey presumably aid the avoidancelearning.  相似文献   

14.
Cox  Serena  Chandler  Sondra  Barron  Caroline  Work  Kirsten 《Journal of Ethology》2009,27(3):497-505
Cryptic coloration reduces the ability of predators to detect prey, but the plasticity of this defense varies. Some organisms possess static and permanent cryptic coloration, whereas in other species color changes may be induced. Depending upon the species, induced color changes may be reversible or irreversible. In this study, we examined a subtle, rapid, and reversible crypsis in which small fish exhibit muted changes in brightness to match varying substrates in clear spring water. In the laboratory, we visually measured the changes in brightness, using a ten-point brightness scale, of five abundant small species in our study spring. Two species, Lucania goodei and Heterandria formosa, exhibited no change, but the other three species exhibited changes in brightness to match background brightness. Two species, Gambusia holbrooki and Poecilia latipinna, exhibited only slight shifts, whereas Lucania parva exhibited relatively large shifts in brightness and color pattern—from virtually white to tan interspersed with dark-brown bands. In the field, L. parva also exhibited significant shifts in brightness and color pattern, both when swimming freely and when enclosed in an open-bottomed cage. These results suggest that rapid cryptic changes in brightness may augment other forms of defense in small vulnerable fish.  相似文献   

15.
Bright body colorations of orb-weaving spiders have been hypothesizedto be attractive to insects and thus function to increase foragingsuccess. However, the color signals of these spiders are alsoconsidered to be similar to those of the vegetation background,and thus the colorations function to camouflage the spiders.In this study, we evaluated these 2 hypotheses by field experimentsand by quantifying the spiders' visibility to insects. We firstcompared the insect interception rates of orbs constructed bythe orchid spider, Leucauge magnifica, with and without thespider. Orbs with spiders intercepted significantly more insectsthan orbs without. Such a result supported the prey attractionbut not the camouflaging hypothesis. We then tested whetherbright body colorations were responsible for L. magnifica'sattractiveness to insects by manipulating the spiders' colorsignals with paint. Alteration of color signals significantlyreduced L. magnifica's insect interception and consumption rates,indicating that these spiders' bright body parts were attractiveto insects. Congruent with the finding of field manipulationswere the color contrasts of various body parts of these spiders.When viewed against the vegetation background, the green bodyparts were lower, but the bright parts were significantly higherthan the discrimination threshold. Results of this study thusprovide direct evidence that bright body colorations of orbweavers function as visual lures to attract insects.  相似文献   

16.
We examine the evolution and maintenance of defence and conspicuousness in prey species using a game theoretic model. In contrast to previous works, predators can raise as well as lower their attack probabilities as a consequence of encountering moderately defended prey. Our model predicts four distinct possibilities for evolutionarily stable strategies (ESSs) featuring maximum crypsis. Namely that such a solution can exist with (1) zero toxicity, (2) a non-zero but non-aversive level of toxicity, (3) a high, aversive level of toxicity or (4) that no such maximally cryptic solution exists. Maximally cryptic prey may still invest in toxins, because of the increased chance of surviving an attack (should they be discovered) that comes from having toxins. The toxin load of maximally cryptic prey may be sufficiently strong that the predators will find them aversive, and seek to avoid similar looking prey in future. However, this aversiveness does not always necessarily trigger aposematic signalling, and highly toxic prey can still be maximally cryptic, because the increased initial rate of attack from becoming more conspicuous is not necessarily always compensated for by increased avoidance of aversive prey by predators. In other circumstances, the optimal toxin load may be insufficient to generate aversion but still be non-zero (because it increases survival), and in yet other circumstances, it is optimal to make no investment in toxins at all. The model also predicts ESSs where the prey are highly defended and aversive and where this defence is advertised at a cost of increased conspicuousness to predators. In many circumstances there is an infinite array of these aposematic ESSs, where the precise appearance is unimportant as long as it is highly visible and shared by all members of the population. Yet another class of solutions is possible where there is strong between-individual variation in appearance between conspicuous, poorly defended prey.  相似文献   

17.
Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.  相似文献   

18.
Animals can evade predators in multiple ways, one of the most effective of which is to avoid detection in the first place. We know much about the evolution of color patterns that match the visual background to avoid detection (i.e., crypsis), yet we know surprisingly less about the specific behaviors that have co‐evolved with these morphological traits to enhance or maintain crypsis. We here explore whether the match between body color and background in a seemingly well‐camouflaged tropical shore crab is a result of active background choice. Taking advantage of a coastal area in the Solomon Islands with variable sand color and a population of the pallid ghost crab Ocypode pallidula with varying carapace color, we experimentally tested whether individuals actively choose specific substrate that best matches their color patterns. We found that individuals taken from extreme sand colors chose substrate that maintained crypsis, with relatively darker crabs typically choosing dark sand and lighter crabs choosing light sand. Crabs of intermediate color pattern, in contrast, showed no clear preference for dark or light sand. Our results suggest that potential prey can actively choose specific backgrounds to enhance and maintain crypsis, providing insights into how behavior interacts with morphological traits to avoid predator detection.  相似文献   

19.
In psychological studies of visual perception, symmetry is accepted as a potent cue in visual search for cryptic objects, yet its importance for non-human animals has been assumed rather than tested. Furthermore, while the salience of bilateral symmetry has been established in laboratory-based search tasks using human subjects, its role in more natural settings, closer to those for which such perceptual mechanisms evolved, has not, to our knowledge, been investigated previously. That said, the salience of symmetry in visual search has a plausible adaptive rationale, because biologically important objects, such as prey, predators or conspecifics, usually have a plane of symmetry that is not present in their surroundings. We tested the conspicuousness to avian predators of cryptic artificial, moth-like targets, with or without bilateral symmetry in background-matching coloration, against oak trees in the field. In two independent experiments, symmetrical targets were predated at a higher rate than otherwise identical asymmetrical targets. There was a small, but significant, fitness cost to symmetry in camouflage patterns. Given that birds are the most commonly invoked predators shaping the evolution of defensive coloration in insects, this raises the question of why bilateral asymmetry is not more common in cryptic insects.  相似文献   

20.
A ‘search image’ is acquired as a result of a change in the ability of a predator to detect cryptic familiar prey. Blackbirds were presented with artificial prey dyed either to match the colour of the background (cryptic prey) or to contrast with the background (conspicuous prey). The results of experiment 1 provide some evidence that 10 wild blackbirds had more difficulty detecting cryptic prey than conspicuous prey. Detailed analysis of experiments 2 (11 wild blackbirds) and 3 (six captive blackbirds) revealed subtle changes in the reactions of the birds to cryptic prey. At first these birds were unable to detect cryptic prey, but subsequently improved their ability to detect such food. This short-term change is interpreted as evidence for search images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号