首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary capillary plexus in early yolk sacs is remodeled into matured vitelline vessels aligned in the direction of blood flow at the onset of cardiac contraction. We hypothesized that the influence of fluid shear stress on cellular behaviors may be an underlying mechanism by which some existing capillary channels remain open while others are closed during remodeling. Using a recently developed E-Tmod knock-out/lacZ knock-in mouse model, we showed that erythroblasts exhibited rheological properties similar to those of a viscous cell suspension. In contrast, the non-erythroblast (NE) cells, which attach among themselves within the yolk sac, are capable of lamellipodia extension and cell migration. Isolated NE cells in a parallel-plate flow chamber exposed to fluid shear stress, however, ceased lamellipodia extension. Such response may minimize NE cell migration into domains exposed to fluid shear stress. A two-dimensional mathematical model incorporating these cellular behaviors demonstrated that shear stress created by the blood flow initiated by the embryonic heart contraction might be needed for the remodeling of primary capillary plexus.  相似文献   

2.
In 11 anesthetized pigs, the left anterior descending coronary artery (LAD) was cannulated and pump perfused with blood before and during maximum adenosine vasodilation. For LAD plasma flows (F) ranging from 0.42 to 3.6 ml.min-1.g perfused tissue-1, we injected radiolabeled microspheres to measure heterogeneity and used the multiple indicator-dilution method to measure permeability-surface area product (PS) for EDTA. Heterogeneity of flow from the LAD was expressed as relative dispersion (RD) = standard deviation of flow/mean flow. Values of RD, corrected for tissue sample size using fractal theory, ranged from 13 to 87%, approaching 16-35% at high F. We developed a "variable-recruitment model" of regional heterogeneous capillary transport to correct PS for flow heterogeneity and capillary surface area recruitment. Values of PS ranged from 0.14 to 0.96 ml.min-1.g-1. Accounting for heterogeneity increased PS values by 0-18% compared with homogeneous values. Results revealed PS to be proportional to flow up to F = 1.5-2.1 ml.min-1.g-1 and then was constant at higher flows. The initial increase of PS with F may be due to capillary recruitment. When full recruitment is reached, PS becomes independent of F. We conclude that flow heterogeneity is significant but not readily predictable in the pig myocardium and that the use of microspheres to correct indicator-dilution data for flow heterogeneity improves the interpretation of multiple-tracer studies, particularly when tracers are used to study interventions that may alter flow distribution.  相似文献   

3.
In eight pigs, total blood flow, regional capillary blood flow distribution, and arteriovenous (AV) shunting were studied during the first 4 postoperative hours after elevation of a myocutaneous rectus abdominis island flap. Capillary blood flow and AV shunting were measured using radioactive microspheres before flap creation and 1 and 4 hours after surgery. Total blood flow, measured continuously as venous outflow, increased in the first postoperative hour (p less than 0.05). Elevation of the flap caused a slight decrease in skin capillary blood flow (p less than 0.05), whereas muscular capillary blood flow increased (p less than 0.01). AV shunting accounted for 50 percent of the total flap blood flow, whereas it was negligible in the abdominal wall prior to flap elevation. Thus stalk blood flow, skin appearance, and skin temperature may be poor indicators of nutritional capillary perfusion. However, the clinical and nutritional consequences of these findings remain to be established.  相似文献   

4.
The results of direct pressure measurements are described which demonstrate that pressures in a certain fraction of mesenteric capillaries remain remarkably constant during large changes in systemic pressure. The results of isogravimetric studies, reported in the literature, are also described which indicate that this phenomenon may also occur in the intestine. The question is raised whether capillary pressures may therefore be regulated. Pressures recorded from mesenteric arterioles and capillaries are shown which indicate that maintenance of a constant capillary pressure is primarily the consequence of the vascular architecture peculiar to this tissue, and is merely a secondary reflection of mechanisms associated with flow regulation. The results of direct pressure measurements recorded in the microcirculation of intestinal muscle are also shown. These data indicate that capillary pressures in innervated, denervated, and xylocaine-treated intestinal muscle change in direct proportion to variations in arterial pressure. It is concluded that capillary pressures in the intestinal muscle layers are therefore not regulated, so that the observation that capillary pressures may be maintained is probably a phenomenon unique to the mesentery. Pressures recorded from capillaries in the mucosal villi are also shown and compared to capillary pressures measured in the microvasculature of mesentery and intestinal muscle. When systemic pressure was normal (107 +/- 10 mm Hg), capillary pressure in the mesentery averaged 30 to 33 mm Hg; capillary pressures in the intestinal muscle averaged 22 to 24 mm Hg; and capillary pressures in the mucosal villi averaged 13 to 15 mm Hg. These data suggest that mesenteric capillaries are primarily a filtering network; intestinal muscle capillaries are normally in fluid balance; whereas at rest mucosal capillaries are primarily absorptive. These pressures, recorded from the three major regions of the rat intestine, were used to calculate a weighted average for the whole organ. The calculated value, based on assumed values for relative capillary densities, was 17 mm Hg. This result compares favorably with data from whole organ, isogravimetric studies, and may clarify some of the apparent discrepancies between previous isogravimetric and servopressure studies.  相似文献   

5.
The endothelial glycocalyx has been identified as a barrier to transvascular exchange of fluid, macromolecules, and leukocyte-endothelium [endothelial cell (EC)] adhesion during the inflammatory process. Shedding of glycans and structural changes of the glycocalyx have been shown to occur in response to several agonists. To elucidate the effects of glycan shedding on microvascular hemodynamics and capillary resistance to flow, glycan shedding in microvessels in mesentery (rat) was induced by superfusion with 10(-7) M fMLP. Shedding was quantified by reductions of fluorescently labeled lectin (BS-1) bound to the EC and reductions in thickness of the barrier to infiltration of 70-kDa dextran on the EC surface. Red cell velocities (two-slit technique), pressure drops (dual servo-null method), and capillary hematocrit (direct cell counting) were measured in parallel experiments. The results indicate that fMLP caused shedding of glycans in all microvessels with reductions in thickness of the barrier to 70-kDa dextran of 110, 80, and 123 nm, in arterioles, capillaries, and venules, respectively. Intravascular volumetric flows fell proportionately in all three divisions in response to rapid obstruction of venules by white blood cell (WBC)-EC adhesion, and capillary resistance to flow rose 18% due to diminished deformability of activated WBCs. Capillary resistance fell significantly 26% over a 30-min period, as glycans were shed from the EC surface to increase effective capillary diameter, whereas capillary hematocrit and anatomic diameter remained invariant. This decrease in capillary resistance mitigates the increase in resistance due to diminished WBC deformability, and hence these concurrent rheological events may be of equal importance in affecting capillary flow during the inflammatory process.  相似文献   

6.
For pulmonary blood flow in zone 2 condition, in which the blood pressure in the venule (pven) is lower than the alveolar gas pressure (pA), the blood exiting from the capillary sheet and entering a venule must go through a sluicing gate. The sluicing gate exists because the venule remains patent while the capillaries will collapse when the static pressure of blood falls below the alveolar gas pressure. In the original theory of sheet flow the effect of the tension in the interalveolar septa on the flow through the sluicing gate was ignored. Since the tension multiplied by the curvature of the membrane is equivalent to a lateral pressure tending to open the gate, and since the curvature of the capillary wall is high in the gate region, this effect may be important. The present analysis improves the original theory and demonstrates that the effect of membrane tension is to cause flow to increase when the venous pressure continues to decrease. The shape of the sluicing gate resembles that of a venturi tube, and can be determined by an iterative integration of the differential equations. The result forms an important link in the theory of pulmonary blood flow in zone 2 condition.  相似文献   

7.
The influence on fluid flow of the fixed charge on the surface of capillaries is calculated using the linearised Poisson-Boltzmann equations. The results depend strongly upon the ratio of the capillary radius to the Debye length. At physiological ionic strength, the Debye length is less than 1 nm and electrostatic effects are negligible. In particular, they can not explain the Copley-Scott Blair phenomenon in artificial capillaries. Electrostatic effects can be significant in smaller channels and it is calculated that in intercellular clefts in the capillary endothelium the apparent viscosity of the fluid may increase more than 50%. These effects can also be important in the flow in the narrow gap between a red cell and the blood capillary wall. Using the Fitzgerald-Lighthill model of this flow and parameters typical of the human microcirculation, the theory predicts that the apparent viscosity in the gap will be increased by about 5%.  相似文献   

8.
Determination of the opening pressure (OP) during diagnostic lumbar puncture (LP) yields additional information that may impact on treatment and prognosis in disorders affecting the central nervous system (e.g. meningitis). Established methods contain systematic errors as well as risks to the patient. We therefore present a new procedure that allows measurement of the OP by timing the flow of cerebrospinal fluid through a capillary attached to an LP needle. A resistance located between needle and capillary slows down the flow of cerebrospinal fluid so that it becomes independent of the capillary forces acting on it. The time required for the fluid to travel between two marks on the capillary (defining a given volume) can be used to calculate the flow. Since the combined resistance of needle and resistance can be calibrated, the pressure driving the flow--in this case the opening pressure--can be calculated. A simple model was used to evaluate the impact of different resistances and different needles on OP determination. The effects of cellular elements and proteins in the CSF are discussed.  相似文献   

9.
The vascular system controls the delivery of nutrients and hormones to muscle, and a number of hormones may act to regulate muscle metabolism and contractile performance by modulating blood flow to and within muscle. This review examines evidence that insulin has major hemodynamic effects to influence muscle metabolism. Whole body, isolated hindlimb perfusion studies and experiments with cell cultures suggest that the hemodynamic effects of insulin emanate from the vasculature itself and involve nitric oxide-dependent vasodilation at large and small vessels with the purpose of increasing access for insulin and nutrients to the interstitium and muscle cells. Recently developed techniques for detecting changes in microvascular flow, specifically capillary recruitment in muscle, indicate this to be a key site for early insulin action at physiological levels in rats and humans. In the absence of increases in bulk flow to muscle, insulin may act to switch flow from nonnutritive to the nutritive route. In addition, there is accumulating evidence to suggest that insulin resistance of muscle in vivo in terms of impaired glucose uptake could be partly due to impaired insulin-mediated capillary recruitment. Exercise training improves insulin-mediated capillary recruitment and glucose uptake by muscle.  相似文献   

10.
Brain blood vessels, unlike most vessels elsewhere in the body, exhibit a blood-brain barrier (BBB) to certain substances, e.g. trypan blue. Under some circumstances this barrier is no longer effective and the permeability of the vessels increases. Although capillarization is much less in the brain than in many other organs, e.g. heart muscle, total cerebral blood flow per minute is enormous. Consequently, to accommodate a large blood volume with a limited capillary bed, the velocity of blood through brain vessels must be extremely fast. The hypothesis presented in this paper is that this rapid flow results in a low or negative pressure on the endothelium, and plasma and trypan blue are prevented from passing through the wall. The tight junctions of cerebral endothelial cells may be able to withstand only a limited amount of pressure on their luminal surface. If the velocity of blood in brain capillaries decreases, pressure on the endothelium should increase, and brain vessels, like blood vessels elsewhere in the body, become permeable to vital dyes. Other conditions also increase capillary permeability, e.g. acute arterial hypertension or venous congestion. Although brain vessels can adapt to a moderate, gradual change in systemic pressure, when a significant rise in cerebral arterial pressure is abrupt, the compensatory changes in the postcapillary venous bed may be inadequate and consequently intracapillary pressure and vascular permeability are increased. Venous congestion increases intracapillary pressure by restricting capillary outflow as well as by reducing velocity through capillary beds. Under such conditions increased capillary permeability may be indicated by cerebral edema, and even, on occasion, by petechial hemorrhages. In short, if the flow is fast and unimpeded the BBB will be effective; if the velocity decreases, or intracapillary pressure increases for whatever reason, the permeability of the brain endothelium will be abnormally increased.  相似文献   

11.
Dhadwal, Amit, Barry Wiggs, Claire M. Doerschuk, and RogerD. Kamm. Effects of anatomic variability on blood flow and pressure gradients in the pulmonary capillaries. J. Appl. Physiol. 83(5): 1711-1720, 1997.Atheoretical model is developed to simulate the flow of blood throughthe capillary network in a single alveolar septum. The objective is tostudy the influence of random variability in capillary dimension andcompliance on flow patterns and pressures within the network. Thecapillary bed is represented as an interconnected rectangular grid ofcapillary segments and junctions; blood flow is produced by applying apressure gradient across the network. Preferred flow channels are shownto be a natural consequence of random anatomic variability, the effectof which is accentuated at low transcapillary pressures. Thedistribution of pressure drops across single capillary segments widenswith increasing network variability and decreasing capillary transmuralpressure. Blockage of one capillary segment causes the pressure dropacross that segment to increase by 60%, but the increase falls to<10% at a distance of three segments. The factors that causenonuniform capillary blood flow through the capillary network arediscussed.

  相似文献   

12.
D Zhang  S Seno  M Akita  T Tsujii 《Histochemistry》1991,96(2):115-121
For the purpose of revealing the barrier effect of the anionic groups of glomerular capillary wall against the serum protein leakage, morphologic and histochemical observations were made on the rat kidney perfused in situ with three kinds of cationic macromolecules different in chemical characteristics followed by blood flow restoration. The polyethyleneimine perfusion resulted in the complete disapperance of ionized anionic groups of glomerular capillary and the massive protein leakage through glomeruli by blood flow restoration. Cationic ferric colloid perfusion induced moderate protein leakage, and avidin perfusion was less in neutralization effect of anionic groups and the protein leakage was of least. The protein leakage from glomeruli, however, was stopped or markedly suppressed soon after the blood flow restoration by the newly formed functioning anionic barrier probably by some particular serum protein deposition. The findings indicate that the deionization of the glomerular capillary wall will not be responsible for the persistent albuminuria.  相似文献   

13.
A new microscopic model is developed to describe the dermal capillary clearance process of skin permeants. The physiological structure is represented in terms of a doubly periodic array of absorbing capillaries. Convection-dominated transport in the blood flow within the capillaries is coupled with interstitial diffusion, the latter process being quantified via a slender-body-theory approach. Convection across the capillary wall and in the interstitial phase is treated as a perturbation which may be added to the diffusive transport. The model accounts for the finite permeability of the capillary wall as well as for the geometry of the capillary array, based on realistic values of physiological parameters. Calculated dermal concentration profiles for permeants having the size and lipophilicity of salicylic acid and glucose illustrate the power and general applicability of the model. Furthermore, validation of the model with published in vivo experimental results pertaining to human skin permeation of hydrocortisone is presented. The model offers the possibility for in-depth theoretical understanding and prediction of subsurface drug distribution in the human skin following topical application, as well as rates of capillary clearance into the systemic circulation. A simpler approach that treats the capillary bed as a homogeneously absorbing zone is also employed. The latter may be used in conjunction with the capillary exchange model to estimate measurable dermal transport and clearance parameters in a straightforward manner.  相似文献   

14.
N Ohshima  M Sato  N Oda 《Biorheology》1988,25(1-2):339-348
Velocities of the red blood cell (RBC) and the suspending medium in glass capillaries of 9 to 20 micron were measured under microscopic observation. The effects of physical factors such as driving pressure, capillary diameter, hematocrits and RBC deformability on flow velocities were studied using freshly drawn blood of the rat resuspended in phosphate buffered saline solution in the hematocrit range between 5 and 12.5%. These RBC suspensions were made to flow through the test glass capillaries under known negative driving pressures. Ratios of capillary hematocrit to feed hematocrit taken as measures of the Fahraeus effect showed almost constant value of about 0.74. While, ratios of capillary hematocrit to discharge hematocrit showed a characteristic dependence on capillary diameter, showing minimal values at about 13 micron in capillary diameter. The same hematocrit ratios were found to be well correlated with values of wall shear rates estimated from the relative RBC velocities.  相似文献   

15.
Microvascular pericytes are believed to be involved in various functions such as regulation of capillary blood flow and endothelial proliferation. Since pericytes represent a morphologically heterogeneous cell population ranging from circular smooth musclelike to elongated fibroblast-like morphology it is possible that regulation of blood flow (via contractility) and control of endothelial proliferation (as well as other metabolic functions) may be accomplished by different subsets of pericytes. In the present study we provide evidence for heterogeneity of pericytes at the molecular level by using two novel technical approaches. These are (a) immunostaining of whole mounts of the microvascular beds of the rat mesentery and bovine retina and (b) immunoblotting studies of microdissected retinal microvessels. We show that pericytes of true capillaries (midcapillaries) apparently lack the smooth muscle isoform of alpha-actin whereas transitional pericytes of pre- and postcapillary microvascular segments do express this isoform. Thus, regulation of capillary blood flow may be accomplished by the smooth muscle-related pre- and postcapillary pericytes whereas the nonmuscle pericytes of true capillaries may play a role in other functions.  相似文献   

16.
Equations are derived describing the dispersion of a permeable solute during Poiseuille flow in a capillary model. It is shown that for the normal range of physiological parameters such as capillary radius, capillary length, blood flow, permeability coefficients, and diffusion constants, the center of mass of a bolus of solute moves at a speed very close to the mean speed of flow and that the solute leaves the capillary with an exponential time course depending on the permeability but not on the diffusion constant. There is no appreciable difference in the dispersion of the solute or in its rate of permeation from the capillary whether one considers piston flow or Poiseuille flow. A bolus of arbitrary radial shape tends to become radially uniform very close to the arterial end of the capillary.  相似文献   

17.
The superficial capillary network of the gastric mucosa can be monitored for red blood cell velocity measurements by a microscopic technique. This network, however, reflects the blood flow in capillaries of more physiological interest, namely those passing by the acid-producing cells and emptying into the superficial network. It is, however, not possible to study these capillaries directly and therefore the problem is to determine in what way and to what degree blood flow measurements in the superficial network reflect the capillary flow of interest. A probabilistic approach where the movements of the red blood cells have been analysed, gives indications of determinable relations between observations on the superficial network flow and the flow passing the acid-producing cells.  相似文献   

18.
Supercoiled plasmid DNA is susceptible to fluid stress in large-scale manufacturing processes. A capillary device was used to generate controlled shear conditions and the effects of different stresses on plasmid DNA structure were investigated. Computational fluid dynamics (CFD) analysis was employed to characterize the flow environment in the capillary device and different analytical techniques were used to quantify the DNA breakage. It was found that the degradation of plasmid DNA occurred at the entrance of the capillary and that the shear stress within the capillary did not affect the DNA structure. The degradation rate of plasmids was well correlated with the average elongational strain rate or the pressure drop at the entrance region. The conclusion may also be drawn that laminar shear stress does not play a significant role in plasmid DNA degradation.  相似文献   

19.
The removal of plasma proteins from a vascular perfusate results in increased labeling of the endothelial cell (EC) vesicles and increased permeability of the capillary wall to water and solutes. The hypothesis that albumin forms part of a molecular filter composed of a network of fibrous molecules is evaluated. The fibrous network covers the EC surface and penetrates the intercellular junctions. Albumin may simply occupy space within the matrix to increase the resistance to water flow and increase exclusion and restriction to diffusion of solutes. Electrostatic interactions between positively charged sites on albumin and negatively charged fibers may also order the fibrous network into a more selective array. In the presence of albumin, the fibrous network would determine the selectivity of the capillary wall. An alternative hypothesis, that a selective pathway is formed when albumin is adsorbed to the walls of the wide portion of the slit, is inconsistent with the area required for the diffusion of small solutes between the endothelial cells. However, the geometry of intercellular channels may partially determine the selectivity of the capillary wall when the fiber matrix containing albumin is disrupted.  相似文献   

20.
The authors have utilized capillaroscopy and forearm blood flow techniques to investigate the role of microvascular dysfunction in pathogenesis of cardiovascular disease. Capillaroscopy is a non-invasive, relatively inexpensive methodology for directly visualizing the microcirculation. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary density), by the maximal capillary density (observed during passive venous occlusion). Percent perfused capillaries represents the proportion of all capillaries present that are perfused (functionally active), and is calculated by dividing postocclusive reactive hyperemia capillary density by the maximal capillary density. Both percent capillary recruitment and percent perfused capillaries reflect the number of functional capillaries. The forearm blood flow (FBF) technique provides accepted non-invasive measures of endothelial function: The ratio FBFmax/FBFbase is computed as an estimate of vasodilation, by dividing the mean of the four FBFmax values by the mean of the four FBFbase values. Forearm vascular resistance at maximal vasodilation (FVRmax) is calculated as the mean arterial pressure (MAP) divided by FBFmax. Both the capillaroscopy and forearm techniques are readily acceptable to patients and can be learned quickly.The microvascular and endothelial function measures obtained using the methodologies described in this paper may have future utility in clinical patient cardiovascular risk-reduction strategies. As we have published reports demonstrating that microvascular and endothelial dysfunction are found in initial stages of hypertension including prehypertension, microvascular and endothelial function measures may eventually aid in early identification, risk-stratification and prevention of end-stage vascular pathology, with its potentially fatal consequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号