首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the sulfated analogue of cauloside C, a biologically active triterpenoid glycoside, was elucidated to be 3-O-[β-D-glucopyranosyl-(1→2)-α-L-arabinopyranosyl]-hederagenin 23,4′,4″,6″-tetrasulfate pentasodium salt by the comparison of its13C NMR spectrum with that of cauloside C potassium salt.  相似文献   

2.
The effect of plant carboxyl-containing glycoside cauloside C upon eucaryotic cells has been studied. The glycoside interacts with cells as a pH-dependent cytotoxin and increases K+ leakage and Ca2+ uptake with strong action in acidic media Cell viability after glycoside action at acidic pH may be recovered by the shift of medium pH from 5.6 to 7.4. Directed transport of low molecular weight effectors such as cAMP and Ca2+ to human embryo fibroblasts under the action of cauloside C has been demonstrated. Calcium uptake is accompanied by about a twofold stimulation of fibroblast proliferation in serum-free medium. The manifestation of the effect depends on the strictly determined time of the 'open' state of the membrane permeability (2 min) and upon concentration of glycoside in the medium (1 ng/ml) Cauloside C-stimulated Ca-transport is not blocked by Ca-channel blockers such as verapamil, diltiasem, and nitrendipine (all at a concentration of 1 x 10(-6) M) but these blockers inhibit cauloside C-stimulated proliferation of fibroblasts. We conclude that stimulation of fibroblast proliferation is caused by activation of membrane associated Ca-channels at the expense of calcium, incorporated into cells with cauloside C. The use of cauloside C as a new biochemical tool for cell permeabilisation is suggested.  相似文献   

3.
The effect of the medium pH on accumulation of [3H]-cauloside C by tumor cells, its intracellular localization, and interaction of the glicoside with membranes of tumor cells and liposomes has been studied. The shift towards weakly acids pH leads to the increase in the amount of cauloside C accumulated by tumor cells and changes the pattern of interaction of cauloside C with the membranes.  相似文献   

4.
The effect of triterpen glycosides, such as cauloside C from Caulophyllum robustum, stichoposide A from Stichopus japonicus S and the asaponine from Thea sinensis L on permeability of the plasmic membranes for amino acids was studied. It was shown that the glycosides induced higher levels of liberation of the amino acids with positively or negatively charged molecules from the cells of Saccharomyces carlsbergensis as compared to the control. The transport of the non-polar amino acids was least affected by addition of the saponines to the incubation medium.  相似文献   

5.
The effect of triterpene glycosides of cauloside C from Caulophyllum robustum M, stichoposide A from Stichopus japonicus S. and theasaponine from Thea sinensis Z. on permeability of plasmic membranes of Saccharomyces carlsbergensis for UV-absorbing substances was studied. It was found that incorporation of 14C-uridine from the endocellular pool into the yeast acid-insoluble fraction decreased under the effect of the triterpene glycosides as a result of the precursor leakage from the cell into the medium. It was found that the triterpene glycosides stimulated the leakage of the UV-absorbing substances with an absorption maximum at 260 nm from the cells. The maximum membranotropic effect was observed at 30--40 degrees C and in the presence of monovalent potassium, sodium, ammonium and lithium ions in the medium. Cauloside C and theasaponine, pentacyclic glycosides had the highest effect on the permeability at pH 4.8--5.6, while stichoposide A, a tetracyclic glycoside, had the highest effect at pH 7.0.  相似文献   

6.
Ali Z  Khan IA 《Phytochemistry》2008,69(4):1037-1042
Blue cohosh, Caulophyllum thalictroides (L.) Michx. (Berberidaceae), is used primarily to cure menstrual disturbances and to ease childbirth. Alkaloids and saponins are considered to be responsible for its pharmacological activity. A detailed phytochemical investigation of blue cohosh resulted in the isolation of 15 compounds belonging to the alkaloids and the triterpene saponins. The structures of two alkaloids, caulophyllumines A (1) and B (2) and a saponin, cauloside H (3) both previously unknown were determined by spectroscopic techniques, including by 1- and 2-D NMR as well as by chemical analysis.  相似文献   

7.
The structure of cauloside D, one of the main saponins isolated from Caulophyllum robustum roots, was shown to be 3-O-α-l-arabinopyranosyl hederagenin-28-O-α-l-rhamnopyranosyl-(1→4)-β-d-glucopyranosyl(1→6)-β-d-glucopyranoside with the aid of methylation and enzymatic hydrolysis by the digestive juice of the Eulota maackii. Cauloside A was shown to be identical with saponin A, isolated from C. robustum Maxim. previously. The composition of the digestive juice of E. maakii was shown to include enzymes that catalyse the cleavage of α-arabinosidic, β-1,6-glucosidic and acyl-O-β-glucosidic linkages.  相似文献   

8.
张钰  陈慧  王改萍 《西北植物学报》2023,43(6):996-1005
以2年生楸树(苏楸1号和008-1)扦插苗为材料,采用盆栽试验法,分析盐胁迫(0.5%NaCl)处理下楸树幼苗生长、生理的变化,并分析不同浓度外源ABA(15、25、35 mg/L)对盐胁迫(30 d)楸树幼苗的缓解效应及其生理生化特性,以探索重度盐胁迫下适合楸树幼苗生长的适宜外源ABA浓度,为增强盐碱地楸树的耐盐性、提高盐碱地的利用提供理论依据。结果显示:(1)0.5%NaCl胁迫下,两品种楸树幼苗叶片表现出不同程度的盐害症状,且‘苏楸1号’叶片盐害症状较‘008-1’严重;随胁迫时间延长,两品种楸树幼苗的相对电导率(REC)均呈先上升后下降的变化趋势,叶绿素(Chl)、相对含水量(RWC)均呈降低趋势,可溶性糖(SS)、可溶性蛋白(SP)、脯氨酸(Pro)以及超氧化物歧化酶(SOD)活性均呈先上升后下降趋势,但‘008-1’的REC显著低于‘苏楸1号’,Chl、RWC、SS、SP、Pro、SOD均显著高于苏楸1号,表明‘008-1’的耐盐性较‘苏楸1号’更强。(2)喷施外源ABA使得盐胁迫下‘008-1’楸树的苗高显著增加、新叶提前萌发,表明外源ABA在一定程度上能够缓解盐胁迫对楸树生长的影响;喷施外源ABA降低了盐胁迫下‘008-1’楸树幼苗叶片的REC,提高了Chl、RWC、SS、SP、Pro、SOD、过氧化物酶(POD)以及过氧化氢酶(CAT)活性,促进了内源激素生长素(IAA)、脱落酸(ABA)、赤霉素(GA3)以及玉米素核苷(ZR)的积累。研究表明,楸树品种‘008-1’的耐盐性更强;外源喷施适宜浓度ABA能够缓解盐胁迫对楸树幼苗生长的影响,降低幼苗叶片细胞膜透性,促进幼苗渗透调节物质的积累,增强渗透调节能力,并提高盐胁迫下幼苗的抗氧化酶活性,促进植物对内源激素含量的调节,从而提高楸树的耐盐性,且以25 mg/L ABA处理的效果最好。  相似文献   

9.
Factorially designed experiments have been used to study the growth and survival of Listeria monocytogenes in different combinations of pH and salt concentrations at ambient and chill temperatures. Survival at low pH and high salt concentration was strongly temperature dependent. The minimum pH values that allowed survival after 4 weeks from an initial 10(4) cells were 4.66 at 30 degrees C, 4.36 at 10 degrees C and 4.19 at 5 degrees C. These limits were salt dependent, low (4-6%) salt concentrations improved and higher concentrations reduced survival at limiting pH values. The lowest pH that allowed a 100-fold increase in cell numbers within 60 d was 4.66 at 30 degrees C but this was increased to 4.83 at 10 degrees C. At 5 degrees C growth occurred at pH 7.0 but not at pH 5.13. Simple predictive models describing the effect of hydrogen-ion and salt concentration on the time for at least a 100-fold increase in numbers at 10 degrees C and 30 degrees C were constructed after analysis of the results for a least squares fit to a quadratic model. The interactions between salt and hydrogen-ion concentration on growth were found to be purely additive.  相似文献   

10.
We examined the effects of chronic nicotine exposure and dietary salt on the arterial blood pressure (BP) changes learned in response to an acute behavioral stress in the Dahl salt-sensitive rat. Four groups were tested: low salt + vehicle; low salt + nicotine; high salt + vehicle; and high salt + nicotine. Rats were fed a low-salt (0.08% NaCl) or a high-salt (8% NaCl) diet for 4 wk; 2.4 mg. kg(-1). day(-1) nicotine or vehicle was given via an implanted osmotic minipump for the last 2 wk. All rats were conditioned by following one tone (CS+) with a 0.5-s tail shock; another tone (CS-) was never followed by shock. CS+ in low salt + vehicle and high salt + vehicle-treated rats evoked an initial arterial BP increase (C(1)), a component of the startle response, and an ensuing, smaller, but more sustained, pressor response (C(2)), which is acquired with training. In these rats, both C(1) and C(2) evoked by CS- were significantly smaller than those to CS+, demonstrating that these groups discriminated between the two tests. Conversely, although the low salt + nicotine-treated rats had both the C(1) and C(2) components of the conditional arterial pressure response, they did not discriminate between CS+ and CS-. Finally, the high salt + nicotine group failed to both discriminate between tones and acquire (i.e., learn) the C(2) response. The unconditional response to shock did not differ between groups. We conclude that combined exposure to high salt and to nicotine inhibits the salt-sensitive animal's acquisition of a learned conditional BP response, perhaps because nicotine acts preferentially on those central processes required for associative learning versus those involved in orientating to external stimuli.  相似文献   

11.
Factorially designed experiments have been used to study the growth and survival of Listeria monocytogenes in different combinations of pH and salt concentrations at ambient and chill temperatures. Survival at low pH and high salt concentration was strongly temperature dependent. The minimum pH values that allowed survival after 4 weeks from an initial 104 cells were 4·66 at 30†C, 4·36 at 10†C and 4·19 at 5†C. These limits were salt dependent, low (4–6%) salt concentrations improved and higher concentrations reduced survival at limiting pH values. The lowest pH that allowed a 100-fold increase in cell numbers within 60 d was 4·66 at 30†C but this was increased to 4·83 at 10†C. At 5†C growth occurred at pH 7·0 but not at pH 5·13. Simple predictive models describing the effect of hydrogen-ion and salt concentration on the time for at least a 100-fold increase in numbers at 10†C and 30†C were constructed after analysis of the results for a least squares fit to a quadratic model. The interactions between salt and hydrogen-ion concentration on growth were found to be purely additive.  相似文献   

12.
Hydrogen exchange experiments using functional labeling and fragment separation methods were performed to study interactions at the C terminus of the hemoglobin beta subunit that contribute to the phosphate effect and the Bohr effect. The results show that the H-exchange behavior of several peptide NH at the beta chain C terminus is determined by a transient, concerted unfolding reaction involving five or more residues, from the C-terminal His146 beta through at least Ala142 beta, and that H-exchange rate can be used to measure the stabilization free energy of interactions, both individually and collectively, at this locus. In deoxy hemoglobin at pH 7.4 and 0 degrees C, the removal of 2,3-diphosphoglycerate (DPG) or pyrophosphate (loss of a salt to His143 beta) speeds the exchange of the beta chain C-terminal peptide NH protons by 2.5-fold (at high salt), indicating a destabilization of the C-terminal segment by 0.5 kcal of free energy. Loss of the His146 beta 1 to Asp94 beta 1 salt link speeds all these protons by 6.3-fold, indicating a bond stabilization free energy of 1.0 kcal. When both these salt links are removed together, the effect is found to be strictly additive; all the protons exchange faster by 16-fold indicating a loss of 1.5 kcal in stabilization free energy. Added salt is slightly destabilizing when DPG is present but provides some increased stability, in the 0.2 kcal range, when DPG is absent. The total allosteric stabilization energy at each beta chain C terminus in deoxy hemoglobin under these conditions is measured to be 3.8 kcal (pH 7.4, 0 degrees C, with DPG). In oxy hemoglobin at pH 7.4 and 0 degrees C, stability at the beta chain C terminus is essentially independent of salt concentration, and the NES modification, which in deoxy hemoglobin blocks the His146 beta to Asp94 beta salt link, has no destabilizing effect, either at high or low salt. These results appear to show that the His146 beta salt link, which participates importantly in the alkaline Bohr effect, does not reform to Asp94 beta or to any other salt link acceptor in a stable way in oxy hemoglobin at low or high salt conditions.  相似文献   

13.
The growth of canola plants treated with either wild-type Pseudomonas putida UW4 or a 1-aminocyclopropane-1-carboxylate (ACC) deaminase minus mutant of this strain was monitored in the presence of inhibitory levels of salt, i.e., 1.0 mol/L at 10 degrees C and 150 mmol/L at 20 degrees C. This strain is psychrotolerant with a maximal growth rate of approximately 30 degrees C and the ability to proliferate at 4 degrees C. Although plant growth was inhibited dramatically by the addition of 1.0 mol/L salt at 10 degrees C and only slightly by 150 mmol/L salt at 20 degrees C under both sets of conditions, the addition of the wild type but not the mutant strain of P. putida UW4 significantly improved plant growth. This result confirms the previous suggestion that bacterial strains that contain ACC deaminase confer salt tolerance to plants by lowering salt-induced ethylene synthesis.  相似文献   

14.
15.
Nucleoside diphosphate kinase (HsNDK) from extremely halophilic haloarchaeon, Halobacterium salinarum, requires salt at high concentrations for folding. A D148C mutant, in which Asp148 was replaced with Cys, was designed to enhance stability and folding in low salt solution by S-S bond. It showed increased thermal stability by about 10 °C in 0.2 M NaCl over the wild type HsNDK. It refolded from heat-denaturation even in 0.1 M NaCl, while the wild type required 2 M NaCl to achieve the same level of activity recovery. This enhanced refolding is due to the three S-S bonds between two basic dimeric units in the hexameric HsNDK structure, indicating that assembly of the dimeric unit may be the rate-limiting step in low salt solution. Circular dichroism and native-PAGE analysis showed that heat-denatured HsNDK formed partially folded dimeric structure, upon refolding, in the absence of salt and the native-like secondary structure in the presence of salt above 0.1 M NaCl. However, it remained dimeric upon prolonged incubation at this salt concentration. In contrary, heat-denatured D148C mutant refolded into tetrameric folding intermediate in the absence of salt and native-like structure above 0.1 M salt. This native-like structure was then converted to the native hexamer with time.  相似文献   

16.
Type 2C protein phosphatases (PP2Cs) are the largest protein phosphatase family. PP2Cs dephosphorylate substrates for signaling in Arabidopsis, but the functions of most PP2Cs remain unknown. Here, we characterized PP2C49 (AT3G62260, a Group G PP2C), which regulates Na+ distribution under salt stress and is localized to the cytoplasm and nucleus. PP2C49 was highly expressed in root vascular tissues and its disruption enhanced plant tolerance to salt stress. Compared with wild type, the pp2c49 mutant contained more Na+ in roots but less Na+ in shoots and xylem sap, suggesting that PP2C49 regulates shoot Na+ extrusion. Reciprocal grafting revealed a root‐based mechanism underlying the salt tolerance of pp2c49. Systemic Na+ distribution largely depends on AtHKT1;1 and loss of function of AtHKT1;1 in the pp2c49 background overrode the salt tolerance of pp2c49, resulting in salt sensitivity. Furthermore, compared with plants overexpressing PP2C49 in the wild‐type background, plants overexpressing PP2C49 in the athtk1;1 mutant background were sensitive to salt, like the athtk1;1 mutants. Moreover, protein–protein interaction and two‐voltage clamping assays demonstrated that PP2C49 physically interacts with AtHKT1;1 and inhibits the Na+ permeability of AtHKT1;1. This study reveals that PP2C49 negatively regulates AtHKT1;1 activity and thus determines systemic Na+ allocation during salt stress.  相似文献   

17.
18.
INTRODUCTION: Most avian and reptilian salt glands display marked phenotypic plasticity when animals are exposed to hyperosmotic conditions. In addition, the activity of most salt glands is under considerable control by the nervous system and nerves containing cholinergic, adrenergic and peptidergic neurotransmitters have been identified in avian and reptilian salt gland tissues. The present study sought to determine whether the salt glands of the estuarine crocodile, Crocodylus porosus contain the peptidergic neurotransmitters SP, CGRP, VIP, and PACAP and the gaseous neurotransmitter, NO. In addition, we sought to determine whether there was any evidence for the adaptation of the C. porosus salt gland nervous system to hyperosmotic conditions. METHODS: Salt glands from freshwater- and saltwater-acclimated C. porosus hatchlings were sectioned and examined immunohistochemically for neurotransmitters within the tissue. RESULTS: Neurons containing SP, CGRP, VIP, PACAP and NO synthase were identified within C. porosus salt glands. There was no difference in the overall number (density) of neurons within SW-acclimated tissues when compared with FW-acclimated animals. However, there was a significant reduction in density of neurons containing SP and PACAP in SW-acclimated animals. CONCLUSION: C. porosus salt glands display phenotypic plasticity following exposure to hyperosmotic conditions. In addition to cholinergic and adrenergic neurons, they contain a variety of peptidergic neurotransmitters and the gaseous neurotransmitter NO. Additionally, there appears to be some evidence of acclimation of the nervous system of C. porosus to hypersaline conditions, although the functional significance of these changes remains to be determined.  相似文献   

19.
盐胁迫下小麦甜菜碱和脯氨酸含量变化   总被引:28,自引:0,他引:28  
运用高效液相色谱-质谱(HPLC-MS)联用技术分析了耐盐性强、中、弱3个小麦品种SW12、宁春4号和中国春苗期5个NaCl浓度胁迫下甜菜碱和脯氨酸含量的变化.方差分析表明盐胁迫下3个小麦品种之间甜菜碱的含量差异达到极显著水平(P<0.01),SW12的含量最高,宁春4号次之,中国春最低,与小麦耐盐性表现相一致;脯氨酸在叶片中的含量差异不显著,在根中宁春4号和中国春的含量有显著差异(P<0.05).结果表明:小麦叶和根中甘氨酸甜菜碱含量与小麦盐胁迫呈正相关,是小麦体内抵御盐胁迫的渗透调节物质之一,可作为小麦耐盐性鉴定指标.  相似文献   

20.
Factor B is a zymogen that carries the catalytic site of the complement alternative pathway C3 convertase. During convertase assembly, factor B associates with C3b and Mg(2+) forming a pro-convertase C3bB(Mg(2+)) that is cleaved at a single factor B site by factor D. In free factor B, a pair of salt bridges binds the Arg(234) side chain to Glu(446) and to Glu(207), forming a double latch structure that sequesters the scissile bond (between Arg(234) and Lys(235)) and minimizes its unproductive cleavage. It is unknown how the double latch is released in the pro-convertase. Here, we introduce single amino acid substitutions into factor B that preclude one or both of the Arg(234) salt bridges, and we examine their impact on several different pro-convertase complexes. Our results indicate that loss of the Arg(234)-Glu(446) salt bridge partially stabilizes C3bB(Mg(2+)). Loss of the Arg(234)-Glu(207) salt bridge has lesser effects. We propose that when factor B first associates with C3b, it bears two intact Arg(234) salt bridges. The complex rapidly dissociates unless the Arg(234)-Glu(446) salt bridge is released whereupon conformational changes occur that activate the metal ion-dependent adhesion site and partially stabilize the complex. The remaining salt bridge is then released, exposing the scissile bond and permitting factor D cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号