首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Saccharomyces cerevisiae DBR1 gene encodes a 2'-5' phosphodiesterase that debranches intron RNA lariats following splicing. Yeast dbr1 mutants accumulate intron lariats and are also defective for mobility of the retrotransposons Ty1 and Ty3. We used a mutagenic PCR method to generate a collection of dbr1 mutant alleles to explore the relationship between the roles of DBR1 in transposition and debranching. Eight mutants defective for Ty1 transposition contained single amino acid changes in Dbr1p. Two mutations, G84A and N85D, are in a conserved phosphoesterase motif that is believed to be part of the active site of the enzyme, supporting a connection between enzymatic activity and Ty1 transposition. Two other mutations, Y68F and Y68D, occur at a potential phosphorylation site, and we have shown that Dbr1p is phosphorylated on tyrosine. We have developed an RNase protection assay to quantitate intron RNA accumulation in cells. The assay uses RNA probes that hybridize to ACT1 intron RNA. Protection patterns confirm that sequences from the 5' end of the intron to the lariat branch point accumulate in dbr1 mutants in a branched (lariat) conformation. RNase protection assays indicate that all of the newly generated dbr1 mutant alleles are also deficient for debranching, further supporting a role for 2'-5' phosphodiesterase activity in Ty1 transposition. A Ty1 element lacking most of its internal sequences transposes independently of DBR1. The existence of Dbr1p-dependent Ty1 sequences raises the possibility that Dbr1p acts on Ty1 RNA.  相似文献   

2.
3.
The cDNAs and genes encoding the intron lariat-debranching enzyme were isolated from the nematode Caenorhabditis elegans and the fission yeast Schizosaccharomyces pombe based on their homology with the Saccharomyces cerevisiae gene. The cDNAs were shown to be functional in an interspecific complementation experiment; they can complement an S. cerevisiae dbr1 null mutant. About 2.5% of budding yeast S. cerevisiae genes have introns, and the accumulation of excised introns in a dbr1 null mutant has little effect on cell growth. In contrast, many S. pombe genes contain introns, and often multiple introns per gene, so that S. pombe is estimated to contain approximately 40 times as many introns as S. cerevisiae. The S. pombe dbr1 gene was disrupted and shown to be nonessential. Like the S. cerevisiae mutant, the S. pombe null mutant accumulated introns to high levels, indicating that intron lariat debranching represents a rate-limiting step in intron degradation in both species. Unlike the S. cerevisiae mutant, the S. pombe dbr1::leu1+ mutant had a severe growth defect and exhibited an aberrant elongated cell shape in addition to an intron accumulation phenotype. The growth defect of the S. pombe dbr1::leu1+ strain suggests that debranching activity is critical for efficient intron RNA degradation and that blocking this pathway interferes with cell growth.  相似文献   

4.
Kim HC  Kim GM  Yang JM  Ki JW 《Molecules and cells》2001,11(2):198-203
The RNA lariat debranching enzyme of mouse (mDBR1) was cloned by screening a NIH/3T3 cDNA library. The sequence of full-length mDBR1 cDNA contained a single 515 amino acid open reading frame of 58 kDa protein. Comparison of the amino acid sequence of mDBR1 to other DBR proteins showed 40%, 44%, 43%, 42%, and 80% identity to Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila melanogaster, and human debranching enzymes, respectively. The mDBR1 cDNA was shown to be functional in an interspecies specific complementation experiment, and an in vitro debranching enzyme assay. Mouse DBR1 could complement the intron accumulation phenotype of a S. cerevisiae dbrl null mutant strain. However, the level of complementation depended on the copy number of the mDBR1 cDNA. The integration of the mDBR1 cDNA in the chromosome of S. pombe also complemented both intron accumulation and slow growth phenotypes of the S. pombe dbr1 knock-out mutant strain.  相似文献   

5.
An evaluation of detection methods for large lariat RNAs   总被引:2,自引:2,他引:0  
Ty1 elements are long terminal repeat (LTR) retrotransposons that reside within the genome of Saccharomyces cerevisiae. It has been known for many years that the 2'-5' phosphodiesterase Dbr1p, which debranches intron lariats, is required for efficient Ty1 transposition. A recent report suggested the intriguing possibility that Ty1 RNA forms a lariat as a transposition intermediate. We set out to further investigate the nature of the proposed Ty1 lariat branchpoint. However, using a wide range of techniques we were unable to find any evidence for the proposed lariat structure. Furthermore, we demonstrate that some of the techniques used in the initial study describing the lariat are capable of incorrectly reporting a lariat structure. Thus, the role of the Dbr1 protein in Ty1 retrotransposition remains elusive.  相似文献   

6.
7.
The effects of branchpoint sequence, the pyrimidine stretch, and intron size on the splicing efficiency of the Drosophila white gene second intron were examined in nuclear extracts from Drosophila and human cells. This 74-nucleotide intron is typical of many Drosophila introns in that it lacks a significant pyrimidine stretch and is below the minimum size required for splicing in human nuclear extracts. Alteration of sequences of adjacent to the 3' splice site to create a pyrimidine stretch was necessary for splicing in human, but not Drosophila, extracts. Increasing the size of this intron with insertions between the 5' splice site and the branchpoint greatly reduced the efficiency of splicing of introns longer than 79 nucleotides in Drosophila extracts but had an opposite effect in human extracts, in which introns longer than 78 nucleotides were spliced with much greater efficiency. The white-apricot copia insertion is immediately adjacent to the branchpoint normally used in the splicing of this intron, and a copia long terminal repeat insertion prevents splicing in Drosophila, but not human, extracts. However, a consensus branchpoint does not restore the splicing of introns containing the copia long terminal repeat, and alteration of the wild-type branchpoint sequence alone does not eliminate splicing. These results demonstrate species specificity of splicing signals, particularly pyrimidine stretch and size requirements, and raise the possibility that variant mechanisms not found in mammals may operate in the splicing of small introns in Drosophila and possibly other species.  相似文献   

8.
A Newman 《The EMBO journal》1987,6(12):3833-3839
In experiments involving deletion and rearrangement of intron sequences two small regions of the intron in the yeast CYH2 ribosomal protein gene were found to play important roles in splicing of the pre-mRNA. One element lies downstream of the 5' splice site, and the other is upstream of the branchpoint sequence UACUAAC. Deletion of the element upstream of the branchpoint prevents spliceosome formation and blocks splicing in vivo and in vitro. Deletion of the element downstream of the 5' splice site does not on its own block splicing but rescues spliceosome formation and splicing of pre-mRNA lacking the element upstream of the branchpoint. These elements correspond to two regions of sequence complementarity which are a conserved feature of the introns in yeast pre-mRNAs. Mixing and matching of the elements from the ACT1 and CYH2 gene introns showed that these elements can cooperate in an intron-specific fashion to control spliceosome assembly.  相似文献   

9.
Saccharomyces cerevisiae Dbr1 is a 405-amino acid RNA debranching enzyme that cleaves the 2′-5′ phosphodiester bonds of the lariat introns formed during pre-mRNA splicing. Debranching appears to be a rate-limiting step for the turnover of intronic RNA, insofar as the steady-state levels of lariat introns are greatly increased in a Δdbr1 strain. To gain insight to the requirements for yeast Dbr1 function, we performed a mutational analysis of 28 amino acids that are conserved in Dbr1 homologs from other organisms. We identified 13 residues (His13, Asp40, Arg45, Asp49, Tyr68, Tyr69, Asn85, His86, Glu87, His179, Asp180, His231 and His233) at which alanine substitutions resulted in lariat intron accumulation in vivo. Conservative replacements at these positions were introduced to illuminate structure–activity relationships. Residues important for Dbr1 function include putative counterparts of the amino acids that comprise the active site of the metallophosphoesterase superfamily, exemplified by the DNA phosphodiesterase Mre11. Using natural lariat RNAs and synthetic branched RNAs as substrates, we found that mutation of Asp40, Asn85, His86, His179, His231 or His233 to alanine abolishes or greatly diminishes debranching activity in vitro. Dbr1 sediments as a monomer and requires manganese as the metal cofactor for debranching.  相似文献   

10.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

11.
Intron lariat formation between the 5' end of an intron and a branchpoint adenosine is a fundamental aspect of the first step in animal and yeast nuclear pre-mRNA splicing. Despite similarities in intron sequence requirements and the components of splicing, differences exist between the splicing of plant and vertebrate introns. The identification of AU-rich sequences as major functional elements in plant introns and the demonstration that a branchpoint consensus sequence was not required for splicing have led to the suggestion that the transition from AU-rich intron to GC-rich exon is a major potential signal by which plant pre-mRNA splice sites are recognized. The role of putative branchpoint sequences as an internal signal in plant intron recognition/definition has been re-examined. Single nucleotide mutations in putative branchpoint adenosines contained within CUNAN sequences in four different plant introns all significantly reduced splicing efficiency. These results provide the most direct evidence to date for preferred branchpoint sequences being required for the efficient splicing of at least some plant introns in addition to the important role played by AU sequences in dicot intron recognition. The observed patterns of 3' splice site selection in the introns studied are consistent with the scanning model described for animal intron 3' splice site selection. It is suggested that, despite the clear importance of AU sequences for plant intron splicing, the fundamental processes of splice site selection and splicing in plants are similar to those in animals.  相似文献   

12.
13.
The 3' regions of several group II introns within the mitochondrial genes nad1 and nad7 show unexpected sequence divergence among flowering plants, and the core domains 5 and 6 are predicted to have weaker helical structure than those in self-splicing group II introns. To assess whether RNA editing improves helical stability by the conversion of A-C mispairs to A-U pairs, we sequenced RT-PCR amplification products derived from excised intron RNAs or partially spliced precursors. Only in some cases was editing observed to strengthen the predicted helices. Moreover, the editing status within nad1 intron 1 and nad7 intron 4 was seen to differ among plant species, so that homologous intron sequences shared lower similarity at the RNA level than at the DNA level. Plant-specific variation was also seen in the length of the linker joining domains 5 and 6 of nad7 intron 3; it ranged from 4 nt in wheat to 11 nt in soybean, in contrast to the 2-4 nt length typical of classical group II introns. However, this intron is excised as a lariat structure with a domain 6 branchpoint adenosine. Our observations suggest that the core structures and sequences of these plant mitochondrial introns are subject to less stringent evolutionary constraints than conventional group II introns.  相似文献   

14.
15.
16.
In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome.  相似文献   

17.
18.
An embryo-defective mutant of Arabidopsis thaliana was isolated that arrests development at a variety of stages, from as early as the globular stage of embryogenesis to as late as formation of an abnormal bent cotyledon stage embryo. Defects in the suspensor, a normally transient structure derived from the fertilized egg, were often associated with the arrested embryo. The lesion was within a gene encoding a protein with domains characteristic of lariat debranching enzymes, which has been named AtDBR1 (for Arabidopsis thaliana Debranching enzyme 1). Cleavage of the 2'-5'-phosphodiester bond found in excised intron lariats ("debranching") is essential for turnover of intronic sequences as well as generation of some small nucleolar RNAs. The mutation within AtDBR1 was confirmed by complementation as being responsible for the embryo-lethal phenotype, and the activity of the encoded protein in cleavage of 2'-5'-phosphodiester bonds was verified using an in vitro debranching assay.  相似文献   

19.
Tgs1 is the enzyme that converts m(7)G RNA caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. Fungi grow vegetatively without TMG caps, thereby raising the question of what cellular transactions, if any, are TMG cap-dependent. Here, we report that Saccharomyces cerevisiae Tgs1 methyltransferase activity is essential for meiosis. tgs1Δ cells are specifically defective in splicing PCH2 and SAE3 meiotic pre-mRNAs. The TMG requirement for SAE3 splicing is alleviated by two intron mutations: a UAUUAAC to UACUAAC change that restores a consensus branchpoint and disruption of a stem-loop encompassing the branchpoint. The TMG requirement for PCH2 splicing is alleviated by a CACUAAC to UACUAAC change restoring a consensus branchpoint and by shortening the PCH2 5' exon. Placing the SAE3 and PCH2 introns within a HIS3 reporter confers Tgs1-dependent histidine prototrophy, signifying that the respective introns are portable determinants of TMG-dependent gene expression. Analysis of in vitro splicing in extracts of TGS1 versus tgs1Δ cells showed that SAE3 intron removal was enfeebled without TMG caps, whereas splicing of ACT1 was unaffected. Our findings illuminate a new mode of tunable splicing, a reliance on TMG caps for an essential developmental RNA transaction, and three genetically distinct meiotic splicing regulons in budding yeast.  相似文献   

20.
Serine-arginine (SR) proteins are general metazoan splicing factors that contain an essential arginine/serine-rich (RS) domain. On typical U2-type introns, RS domains contact the branchpoint and 5' splice site to promote base-pairing with U small nuclear RNAs (snRNAs). Here we analyze the role of SR proteins in splicing of U12-type introns and in the second step of U2-type intron splicing. We show that RS domains contact the branchpoint and 5' splice site of a U12-type intron. On a U2-type intron, we find that the RS domain contacts the site of the U6 snRNA-5' splice site interaction during the first step of splicing and shifts to contact the site of the U5 snRNA-exon 1 interaction during the second step. Our results reveal alternative interactions between the RS domain and 5' splice site region that coincide with remodeling of the spliceosome between the two catalytic steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号