首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenic is an environmental toxicant and a human carcinogen. The kidney, a known target organ of arsenic toxicity, is critical for both in vivo arsenic biotransformation and elimination. This study investigates the potential of an immortalized human proximal tubular epithelial cell line, HK-2, to serve as a representative model for low level exposures of the human kidney to arsenic. Subcytotoxic concentrations of arsenite (< or = 10 micromol/L) and arsenate (< 100 micromol/L) were determined by leakage of LDH from cells exposed for 24 h. Threshold concentrations of arsenite (between 1 and 10 micromol/L) and arsenate (between 10 and 25 micromol/L) were found to affect MTT processing by mitochondria. Biotransformation of subcytotoxic arsenite or arsenate was determined using HPLC-ICP-MS to detect metabolites in cell culture media and cell lysates. Following 24 h, analysis of media revealed that arsenite was minimally oxidized to arsenate and arsenate was reduced to arsenite. Only arsenite was detected in cell lysates. Pentavalent methylated arsenicals were not detected in media or lysates following exposure to either inorganic arsenical. The activities of key arsenic biotransformation enzymes--MMAV reductase and AsIII methyltransferase--were evaluated to determine whether HK-2 cells could reduce and methylate arsenicals. When compared to the activities of these enzymes in other animal tissues, the specific activities of HK-2 cells were indicative of a robust capacity to metabolize arsenic. It appears this human renal cell line is capable of biotransforming inorganic arsenic compounds, primarily reducing arsenate to arsenite. In addition, even at low concentrations, the mitochondria are a primary target for toxicity.  相似文献   

2.

Background  

Phylogenies of certain bioenergetic enzymes have proved to be useful tools for deducing evolutionary ancestry of bioenergetic pathways and their relationship to geochemical parameters of the environment. Our previous phylogenetic analysis of arsenite oxidase, the molybdopterin enzyme responsible for the biological oxidation of arsenite to arsenate, indicated its probable emergence prior to the Archaea/Bacteria split more than 3 billion years ago, in line with the geochemical fact that arsenite was present in biological habitats on the early Earth. Respiratory arsenate reductase (Arr), another molybdopterin enzyme involved in microbial arsenic metabolism, serves as terminal oxidase, and is thus situated at the opposite end of bioenergetic electron transfer chains as compared to arsenite oxidase. The evolutionary history of the Arr-enzyme has not been studied in detail so far.  相似文献   

3.
An As-hypertolerant Alishewanella sp. GIDC-5 (Accession no. HQ659190) was isolated from an effluent treatment plant of the industrial area near Sachin, Gujarat (India). In vitro studies revealed that GIDC-5 can tolerate 18 mM of arsenite [As(III)] and 220 mM of arsenate [As(V)]. PCR analysis confirmed the presence of arsenite transporters [arsB and ACR3(1)] and arsenite oxidase gene [aioB]. Specific activities of arsenite oxidase and arsenate reductase, located on membrane and cytoplasmic fractions respectively, increased in dose dependent manner with arsenite concentration. Also, specific activities of antioxidant enzymes viz., catalase, ascorbate peroxidase, superoxide dismutase and glutathione S-transferase increased in presence of arsenite. Increased exposure to arsenite changes enzyme activities of the glycolysis, Krebs and glyoxylate branches dramatically. These results reveal that along with ars operon, metabolic adaptation and antioxidant activities participate in As(III) tolerance in Alishewanella sp. GIDC-5.  相似文献   

4.
The inactivation of sulfite oxidase, a molybdoenzyme containing the Mo cofactor, by arsenite and periodate was investigated. In contrast to ferricyanide (Gardlik, S., and Rajagopalan, K.V. (1991) J. Biol. Chem. 266, 4889-4895), neither of these reagents causes oxidation of the pterin ring of the Mo cofactor. Instead, inactivation by these reagents appears to involve attack on sulfhydryl groups at the active site of the enzyme. The inactivation of sulfite oxidase by arsenite was shown to be dependent on the presence of O2 and on the enzymatic oxidation of arsenite to arsenate. The inactivation was preventable by the presence of sulfite, or by the use of cytochrome c as the electron acceptor instead of O2. It is concluded that inactivation by arsenite is the result of arsenite displacement of Mo during enzymatic oxidation of arsenite to arsenate, when Mo transiently breaks its bond to protein or molybdopterin sulfhydryl(s) in order to provide a site for transfer of electrons to O2. Data indicate that arsenite is properly oriented to displace Mo only once every 20,800 turnovers, thus accounting for the slow rate of inactivation by this reagent. Inactivation of sulfite oxidase by periodate is believed to occur as the result of direct attack of periodate on the thiolate ligands of Mo, either those of the protein and/or molybdopterin, leading to Mo loss. Treatment of enzyme with even low levels of periodate resulted in loss of Mo and both sulfite:cytochrome c and sulfite:O2 activities. Molybdopterin of periodate-inactivated enzyme retained the ability to reconstitute nitrate reductase apoprotein in nit-1 extracts and the ability to reduce dichlorophenolindophenol, indicating that the pterin ring had not been oxidized.  相似文献   

5.
Inorganic arsenicals are environmental toxins that have been connected with neuropathies and impaired cognitive functions. To investigate whether such substances accumulate in brain astrocytes and affect their viability and glutathione metabolism, we have exposed cultured primary astrocytes to arsenite or arsenate. Both arsenicals compromised the cell viability of astrocytes in a time- and concentration-dependent manner. However, the early onset of cell toxicity in arsenite-treated astrocytes revealed the higher toxic potential of arsenite compared with arsenate. The concentrations of arsenite and arsenate that caused within 24 h half-maximal release of the cytosolic enzyme lactate dehydrogenase were around 0.3 mM and 10 mM, respectively. The cellular arsenic contents of astrocytes increased rapidly upon exposure to arsenite or arsenate and reached after 4 h of incubation almost constant steady state levels. These levels were about 3-times higher in astrocytes that had been exposed to a given concentration of arsenite compared with the respective arsenate condition. Analysis of the intracellular arsenic species revealed that almost exclusively arsenite was present in viable astrocytes that had been exposed to either arsenate or arsenite. The emerging toxicity of arsenite 4 h after exposure was accompanied by a loss in cellular total glutathione and by an increase in the cellular glutathione disulfide content. These data suggest that the high arsenite content of astrocytes that had been exposed to inorganic arsenicals causes an increase in the ratio of glutathione disulfide to glutathione which contributes to the toxic potential of these substances.  相似文献   

6.
Oxidation of Arsenite by a Soil Isolate of Alcaligenes   总被引:3,自引:1,他引:2  
A strain of Alcaligenes , isolated from soil and grown in nutrient broth in the presence of arsenite, possessed the ability to oxidize arsenite to arsenate. Washed cell suspensions consumed one-half mol of oxygen/mol of arsenite and produced arsenate. The optimum pH for arsenite oxidation was 7.0. The Km for arsenite was 1.5 × 10-4 M and V max was 6.7 μl of oxygen/min. The arsenite-oxidizing enzyme system was induced by growth in arsenite. Response of the arsenite-oxidizing enzyme system to respiratory inhibitors suggested that electrons resulting from arsenite oxidation by an oxido-reductase with a bound flavin are transferred via cytochrome c and cytochrome oxidase to oxygen. The presence of the cytochromes in crude extract was confirmed by spectral measurements.  相似文献   

7.
The role of the methylation in the detoxication of arsenate in the rabbit   总被引:1,自引:0,他引:1  
The biotransformation, tissue retention, intracellular binding and biokinetics of arsenic were studied in rabbits exposed to [74As]arsenate (0.4 mg As/kg body wt., i.v.). Inhibition of the methyltransferase activity by injection of periodate-oxidized adenosine (PAD) caused a marked decrease of the formation of [74As]dimethylarsinic acid (DMA), which gave rise to 1.5-4 times increased tissue levels of 74As. This is almost the same as reported for rabbits given arsenite in combination with PAD and was due to a rapid reduction of the arsenate to arsenite which bound to the tissues. Only about 30% of the arsenate given was excreted unchanged in the urine, indicating that a large part was reduced to AsIII. Thus the methylation to DMA seems to be almost as important for the detoxication following exposure to arsenate as that following exposure to arsenite. In the rabbits with normal methylating capacity 50-70% of the produced AsIII was methylated to DMA. The liver was the only organ in which DMA was present 1 h after the administration, indicating that this is the main site of the methylation. The DMA was rapidly cleared from all tissues except the thyroid.  相似文献   

8.
Interactions of arsenic with essential trace elements may result in disturbances on body homeostasis. In the present study, we aimed to investigate the effects of different arsenic compounds on micromineral content and antioxidant enzyme activities in rat liver. Male Wistar rats were randomly divided into five groups and exposed to sodium arsenite and sodium arsenate at 0.01 and 10 mg/L for 8 weeks in drinking water. The concentration of arsenic increased in the liver of all arsenic-exposed animals. The proportion of zinc and copper increased in animals exposed to 0.01 mg/L sodium arsenite. In addition, these animals presented a reduction in magnesium and sodium content. Superoxide dismutase activity decreased mainly in arsenite-exposed animals, whereas catalase activity decreased in animals exposed to 10 mg/L sodium arsenate. Further, exposure to sodium arsenate at 10 mg/L altered copper and magnesium content in the liver, and reduced total protein levels. Overall, both arsenic compounds altered the liver histology, with reduction in the proportion of cytoplasm and hepatocyte, and increased the percentage of sinusoidal capillaries and macrophages. In conclusion, our findings showed that oral exposure to arsenic compounds disturbs the trace elements balance in the liver, especially at low concentration, altering enzymatic and stereological parameters. We concluded that despite the increase in trace elements content, the antioxidant enzyme activities were downregulated and did not prevent morphological alterations in the liver of animals exposed to both arsenic compounds.  相似文献   

9.
The frequent abundance of arsenic in the environment has guided the evolution of enzymes for the reduction of arsenate. The arsenate reductases (ArsC) from different sources have unrelated sequences and structural folds, and can be divided into different classes on the basis of their structures, reduction mechanisms and the locations of catalytic cysteine residues. The thioredoxin-coupled arsenate reductase class is represented by Staphylococcus aureus pI258 ArsC and Bacillus subtilis ArsC. The ArsC from Escherichia coli plasmid R773 and the eukaryotic ACR2p reductase from Saccharomyces cerevisiae represent two distinct glutaredoxin-linked ArsC classes. All are small cytoplasmic redox enzymes that reduce arsenate to arsenite by the sequential involvement of three different thiolate nucleophiles that function as a redox cascade. In contrast, the ArrAB complex is a bacterial heterodimeric periplasmic or a surface-anchored arsenate reductase that functions as a terminal electron acceptor and transfers electrons from the membrane respiratory chain to arsenate. Finally, the less well documented arsenate reductase activity of the monomeric arsenic(III) methylase, which is an S-adenosylmethionine (AdoMet)-dependent methyltransferase. After each oxidative methylation cycle and before the next methylation step, As(V) is reduced to As(III). Methylation by this enzyme is also considered an arsenic-resistance mechanism for bacteria, fungi and mammals.  相似文献   

10.
Two environmental sites in New Zealand were sampled (e.g., water and sediment) for bacterial isolates that could use either arsenite as an electron donor or arsenate as an electron acceptor under aerobic and anaerobic growth conditions, respectively. These two sites were subjected to widespread arsenic contamination from mine tailings generated from historic gold mining activities or from geothermal effluent. No bacteria were isolated from these sites that could utilize arsenite or arsenate under the respective growth conditions tested, but a number of chemoheterotrophic bacteria were isolated that could grow in the presence of high concentrations of arsenic species. In total, 17 morphologically distinct arsenic-resistant heterotrophic bacteria isolates were enriched from the sediment samples, and analysis of the 16S rRNA gene sequence of these bacteria revealed them to be members of the genera Exiguobacterium, Aeromonas, Bacillus, Pseudomonas, Escherichia, and Acinetobacter. Two isolates, Exiguobacterium sp. WK6 and Aeromonas sp. CA1, were of particular interest because they appeared to gain metabolic energy from arsenate under aerobic growth conditions, as demonstrated by an increase in cellular growth yield and growth rate in the presence of arsenate. Both bacteria were capable of reducing arsenate to arsenite via a non-respiratory mechanism. Strain WK6 was positive for arsB, but the pathway of arsenate reduction for isolate CA1 was via a hitherto unknown mechanism. These isolates were not gaining an energetic advantage from arsenate or arsenite utilization, but were instead detoxifying arsenate to arsenite. As a subsidiary process to arsenate reduction, the external pH of the growth medium increased (i.e., became more alkaline), allowing these bacteria to grow for extended periods of time.  相似文献   

11.
The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.  相似文献   

12.
Yin XX  Chen J  Qin J  Sun GX  Rosen BP  Zhu YG 《Plant physiology》2011,156(3):1631-1638
Arsenic (As) is a pervasive and ubiquitous environmental toxin that has created worldwide human health problems. However, there are few studies about how organisms detoxify As. Cyanobacteria are capable of both photolithotrophic growth in the light and heterotrophic growth in the dark and are ubiquitous in soils, aquatic systems, and wetlands. In this study, we investigated As biotransformation in three cyanobacterial species (Microcystis sp. PCC7806, Nostoc sp. PCC7120, and Synechocystis sp. PCC6803). Each accumulated large amounts of As, up to 0.39 g kg(-1) dry weight, 0.45 g kg(-1) dry weight, and 0.38 g kg(-1) dry weight when treated with 100 μM sodium arsenite for 14 d, respectively. Inorganic arsenate and arsenite were the predominant species, with arsenate making up >80% of total As; methylated arsenicals were detected following exposure to higher As concentrations. When treated with arsenate for 6 weeks, cells of each cyanobacterium produced volatile arsenicals. The genes encoding the As(III) S-adenosylmethionine methyltransferase (ArsM) were cloned from these three cyanobacteria. When expressed in an As-hypersensitive strain of Escherichia coli, each conferred resistance to arsenite. Two of the ArsM homologs (SsArsM from Synechocystis sp. PCC6803 and NsArsM from Nostoc sp. PCC7120) were purified and were shown to methylate arsenite in vitro with trimethylarsine as the end product. Given that ArsM homologs are widespread in cyanobacteria, we propose that they play an important role in As biogeochemistry.  相似文献   

13.
Mitochondrial lipoamide dehydrogenase is essential for the activity of four mitochondrial enzyme complexes central to oxidative metabolism. The reduction in protein amount and enzyme activity caused by disruption of mitochondrial LIPOAMIDE DEHYDROGENASE2 enhanced the arsenic sensitivity of Arabidopsis thaliana. Both arsenate and arsenite inhibited root elongation, decreased seedling size and increased anthocyanin production more profoundly in knockout mutants than in wild‐type seedlings. Arsenate also stimulated lateral root formation in the mutants. The activity of lipoamide dehydrogenase in isolated mitochondria was sensitive to arsenite, but not arsenate, indicating that arsenite could be the mediator of the observed phenotypes. Steady‐state metabolite abundances were only mildly affected by mutation of mitochondrial LIPOAMIDE DEHYDROGENASE2. In contrast, arsenate induced the remodelling of metabolite pools associated with oxidative metabolism in wild‐type seedlings, an effect that was enhanced in the mutant, especially around the enzyme complexes containing mitochondrial lipoamide dehydrogenase. These results indicate that mitochondrial lipoamide dehydrogenase is an important protein for determining the sensitivity of oxidative metabolism to arsenate in Arabidopsis.  相似文献   

14.
Plasmids in both Escherichia coli and Staphylococcus aureus contain an "operon" that confers resistance to arsenate, arsenite, and antimony(III) salts. The systems were always inducible. All three salts, arsenate, arsenite, and antimony(III), were inducers. Mutants and a cloned deoxyribonucleic acid fragment from plasmid pI258 in S. aureus have lost arsenate resistance but retained resistances to arsenite and antimony, demonstrating that separate genes are involved. Arsenate-resistant arsenite-sensitive S. aureus plasmid mutants were also isolated. In E. coli, plasmid-determined arsenate resistance and reduced uptake were additive to that found with chromosomal arsenate resistance mutants. Arsenate resistance was due to reduced uptake of arsenate by the induced plasmid-containing cells. Under conditions of high arsenate, when some uptake could be demonstrated with the induced resistant cells, the arsenate was rapidly lost by the cells in the absence of extracellular phosphate. Sensitive cells retained arsenate under these conditions. When phosphate was added, phosphate-arsenate exchange occurred. High phosphate in the growth medium protected cells from arsenate, but not from arsenite or antimony(III) toxicity. We do not know the mechanisms of arsenite or antimony resistance. However, arsenite was not oxidized to less toxic arsenate. Since cell-free medium "conditioned" by prior growth to induced resistant cells with toxic levels of arsenite or antimony(III) retained the ability to inhibit the growth of sensitive cells, the mechanism of arsenite and antimony resistance does not involve conversion of AsO2- or SbO+ to less toxic forms or binding by soluble thiols excreted by resistant cells.  相似文献   

15.
Steady exposure to environmental arsenic has led to the evolution of vital cellular detoxification mechanisms. Under aerobic conditions, a two-step process appears most common among microorganisms involving reduction of predominant, oxidized arsenate (H(2)As(V)O(4)(-)/HAs(V)O(4)(2-)) to arsenite (As(III)(OH)(3)) by a cytosolic enzyme (ArsC; Escherichia coli type arsenate reductase) and subsequent extrusion via ArsB (E. coli type arsenite transporter)/ACR3 (yeast type arsenite transporter). Here, we describe novel fusion proteins consisting of an aquaglyceroporin-derived arsenite channel with a C-terminal arsenate reductase domain of phosphotyrosine-phosphatase origin, providing transposable, single gene-encoded arsenate resistance. The fusion occurred in actinobacteria from soil, Frankia alni, and marine environments, Salinispora tropica; Mycobacterium tuberculosis encodes an analogous ACR3-ArsC fusion. Mutations rendered the aquaglyceroporin channel more polar resulting in lower glycerol permeability and enhanced arsenite selectivity. The arsenate reductase domain couples to thioredoxin and can complement arsenate-sensitive yeast strains. A second isoform with a nonfunctional channel may use the mycothiol/mycoredoxin cofactor pool. These channel enzymes constitute prototypes of a novel concept in metabolism in which a substrate is generated and compartmentalized by the same molecule. Immediate diffusion maintains the dynamic equilibrium and prevents toxic accumulation of metabolites in an energy-saving fashion.  相似文献   

16.
Uptake kinetics of arsenic species in rice plants   总被引:35,自引:0,他引:35  
Arsenic (As) finds its way into soils used for rice (Oryza sativa) cultivation through polluted irrigation water, and through historic contamination with As-based pesticides. As is known to be present as a number of chemical species in such soils, so we wished to investigate how these species were accumulated by rice. As species found in soil solution from a greenhouse experiment where rice was irrigated with arsenate contaminated water were arsenite, arsenate, dimethylarsinic acid, and monomethylarsonic acid. The short-term uptake kinetics for these four As species were determined in 7-d-old excised rice roots. High-affinity uptake (0-0.0532 mM) for arsenite and arsenate with eight rice varieties, covering two growing seasons, rice var. Boro (dry season) and rice var. Aman (wet season), showed that uptake of both arsenite and arsenate by Boro varieties was less than that of Aman varieties. Arsenite uptake was active, and was taken up at approximately the same rate as arsenate. Greater uptake of arsenite, compared with arsenate, was found at higher substrate concentration (low-affinity uptake system). Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly suppressed in the presence of phosphate, whereas arsenite transport was not affected by phosphate. At a slow rate, there was a hyperbolic uptake of monomethylarsonic acid, and limited uptake of dimethylarsinic acid.  相似文献   

17.
18.
19.
A plasmid-encoded anion-translocating ATPase   总被引:1,自引:0,他引:1  
An anion-translocating ATPase has been identified as the product of the arsenical resistance operon of resistance plasmid R773. When expressed in Escherichia coli this ATP-driven oxyanion pump catalyzes extrusion of the oxyanions arsenite, antimonite and arsenate. Maintenance of a low intracellular concentration of oxyanion produces resistance to the toxic agents. The pump is composed of two polypeptides, the products of the arsA and arsB genes. This two-subunit enzyme produces resistance to arsenite and antimonite. A third gene, arsC, expands the substrate specificity to allow for arsenate pumping and resistance.  相似文献   

20.
The time- and concentration-dependent uptake kinetics for arsenate and arsenite were determined in 15-day-old excised roots. In both cases, arsenite showed a mono-phasic influx with the isotherm data fitting a linear model better than a non-linear one. The time- and the concentration-dependent uptake of arsenate displayed a hyperbolic kinetic. Greater uptake of arsenate, compared with arsenite, was found especially at lower external substrate concentrations. Competitive inhibition of uptake with phosphate showed that arsenite and arsenate were taken up by different uptake systems because arsenate uptake was strongly inhibited in the presence of phosphate, whereas arsenite uptake was not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号