首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The display of penile reflexes and copulatory behavior appears to reflect the activity of two different underlying neuronal system, both of which are modulated by systemic testosterone (T) concentration. To indirectly compare the two systems, the responsiveness to T of penile reflexes and copulatory behavior was examined. In the first experiment castrated spinal male rats were given penile reflex tests while receiving replacement T through Silastic capsule implants filled with T (50 mm T). After capsule removal the number of penile erections and flips declined within 24 hr and gradually decreased for 12 days. Subjects were then reimplanted with new 50-mm T capsules. The number of penile flips and erections increased within 6 and 12 hr. respectively. This is a much more rapid response rate to T than has been established for copulatory behavior. In the second experiment castrated spinal male rats were tested for penile reflexes with a 50-mm T capsule, which was then replaced with a 10-, 5-, or 2-mm T or an empty capsule. The number of penile reflexes declined in a dose-response fashion. In the third experiment, castrated sexually experienced male rats were tested for copulatory behavior with two 25-mm T capsules which were then replaced with a 10 or 2-mm T or an empty capsule. Only males with empty capsules had decrements in copulatory behavior, revealing that a low level of T can maintain virtually normal sexual behavior despite a marked decline in penile reflex activity. The neuronal system underlying penile reflexes (spinal neurons) is apparently much more responsive to changes in T concentrations than the neuronal system underlying motivational and appetitive aspects of copulatory behavior (brain neurons).  相似文献   

2.
This study was undertaken to investigate the prevalent hypothesis that androgens are responsible for the organ-specific down-regulation of penile androgen receptors (ARs) and decline of penile growth in the rat during sexual maturation. Sexually immature male rats (21 days old) were castrated and treated for 3 days (“short-term”), with high doses of: (a) testosterone and the -reductase inhibitor finasteride (T/F); (b) dihydrotestosterone (DHT); or (c) finasteride alone (F). Intact and castrate controls received vehicle only. PolyA + RNA was analysed by Northern blot hybridization and ARs were estimated in the penis and ventral prostates by (3-H)R-1881 binding in the cytosol. Short-term castration, with or without F, increased penile AR mRNA, whereas high doses of T/F and DHT reduced it considerably. Although penile cytosol AR concentration in the control castrates, with or without F, paralleled the AR mRNA rise, treatment with androgens left cytosol AR content per organ and AR concentration above those of the intact rat penis despite the drop in AR mRNA. A “long-term” treatment (10 days) on 19-day-old rats with either medium or high doses of T/F and DHT also failed to down-regulate penile cytosol ARs below the intact controls. Western blot analysis of penile cytosol AR levels confirmed these results. Block of pituitary FSH and LH release by a GnRH antagonist in castrates receiving T/F or DHT at high doses did not modify the response. In the case of intact rats, high doses of T/F or DHT actually increased penile cytosol AR content. No difference was observed between T/F and DHT effects. In contrast to what occurs during sexual maturation, the prostate ARs and growth rate responded to all treatments in a similar way to what was observed in the penis. Our results suggest that increases in serum T or DHT are not major factors in the physiological down-regulation of ARs and androgen-dependent growth in the rat corpora cavernosa.  相似文献   

3.
Male rats exhibit erections in the presence of inaccessible estrous females, and we investigated which gonadal steroids regulate these noncontact erections (NCEs). Sexually experienced Wistar males (n >/= 8/group) were tested for NCE four times (every 3 days) before castration, after castration, and after receiving subcutaneous implants of 10-mm Silastic capsules that were empty or filled with crystalline testosterone propionate (TP), dihydrotestosterone (DHT), estradiol benzoate (EB), or DHT + EB (10 mm each). Before castration, males responded with NCE in approximately 50% of tests. No males had NCEs after castration, beginning 3 days after surgery. Also, no males responded after treatment with EB or empty capsules. After receiving implants of TP, DHT, or DHT + EB, 50% of males had NCEs, beginning with the first test 3 days after treatment. On every measure of NCE, males treated with DHT or DHT + EB were indistinguishable from each other and from TP-treated males. Among the sexual responses of male rats, NCE appears to be more sensitive than other behaviors to changes in gonadal condition. In its profile of response to gonadal steroids (testosterone+, dihydrotestosterone+, estradiol-), NCE is similar to reflexive erection, for which spinal systems are sufficient, and unlike copulation (T+, DHT-, E+), which depends on discrete areas of the brain. We nonetheless conclude that NCE depends on androgen-sensitive systems in the brain, but androgen-sensitive neurons in the lumbosacral spinal cord may also play a role.  相似文献   

4.
Male rats castrated neonatally and treated with a combination of 0.5 μg estradiol benzoate (EB) plus 50μg dihydrotestosterone propionate (DHTP) for the next 14 days displayed normal sexual behavior when injected with testosterone propionate (TP) in adulthood. Neither EB nor DHTP alone had this developmental effect inasmuch as only 20–25% of the neonatal castrates treated with just 0.1, 0.5, or 10 μg EB, or 50 μg DHTP, displayed ejaculatory responses. The periodic application of mildly painful electric shock, which has been previously shown to markedly facilitate ejaculatory responding in normal male rats, failed to improve sexual performance in these latter subjects. This was true even of the castrates treated neonatally with DHTP which frequently intromitted. Castrates treated with EB or DHTP alone neonatally were subjected to spinal transection (after testing of sexual behavior) for examination of penile reflexes. Those treated with DHTP showed normal reflexes, characterized by numerous erections and flips, indicating the presumably nonaromatizable DHTP has developmental effects on penile reflexes similar to those of testosterone. Subjects treated with EB, including four animals that had ejaculated at least once, displayed very few, if any, erections on reflex tests and no flips. These results show that sometimes intromissive and ejaculatory patterns can occur even though the animal appears to have little or no capacity for penile reflexes.  相似文献   

5.
Methodological shortcomings present in elicitation of male sexual reflexes in anesthetized animals. The present study has demonstrated, however, that intraperitoneal (i.p.) injection of p-chloroamphetamine (PCA), an indirect serotonin (5-HT) agonist, elicited simultaneously both penile erection and ejaculation in anesthetized rats. PCA (2.5-10.0 mg/kg, i.p.) caused an intermittent cluster of genital responses consisting of penile erection, glans erections, and penile cups, which closely resembles the response observed during the ex copula tests in unanesthetized rats. Measurements of intracavernous penile pressure showed that rhythmic changes in penile pressure were produced by PCA, together with glans erections and penile cups. PCA also caused a frequent ejaculations and the weighing of ejaculate accumulated over 0.5 hr was increased in a bell-shaped pattern, and the maximum effect was observed at 5.0 mg/kg. Pretreatment with p-chlorophenylalanine, a serotonin (5-HT)-synthesis inhibitor, significantly inhibited the expression of PCA-induced penile erection and ejaculation, while acute spinal transection at thoracic level did not affect the sexual responses. These results indicate that PCA-induced penile erection and ejaculation in anesthetized rats are mainly produced by the release of 5-HT, which is limited to the lower spinal cord and/or the peripheral sites. Furthermore, the sexual responses can be easily and reliably elicited by administration of PCA, which may be useful for the study of the mechanisms underlying male sexual functions.  相似文献   

6.
The objective of the present study was to investigate the effect of the time of administration of androgen, during the neonatal period, on the development of masculine copulatory behavior in female rats. In addition, the influence of androgen, administered neonatally, on the development of penile reflexes and cytoplasmic androgen receptor levels in the hypothalamic-preoptic area (HPOA) was examined. Female rats were injected with 0.5 mg testosterone propionate (TP) at either 1, 8, or 24 hr after birth and again 24 hr after the first injection. Fifty percent of the females treated with TP at 1 and 8 hr after birth displayed the ejaculatory response when tested in adulthood. In contrast, 93 and 87.5% of oil-treated males and females, respectively, which were androgenized at 24 hr after birth exhibited this response. The results indicate that a considerable amount of masculinization occurs postnatally in the rat. However, none of the androgenized females displayed any penile reflexes even when tested following the display of an ejaculatory response. HPOA androgen receptor levels were somewhat higher in the oil-treated females than in males but were not correlated with the ability to exhibit ejaculation patterns.  相似文献   

7.

Background

Many men suffering from stress, including post-traumatic stress disorder (PTSD), report sexual dysfunction, which is traditionally treated via psychological counseling. Recently, we identified a gastrin-releasing peptide (GRP) system in the lumbar spinal cord that is a primary mediator for male reproductive functions.

Methodology/Principal Findings

To ask whether an acute severe stress could alter the male specific GRP system, we used a single-prolonged stress (SPS), a putative rat model for PTSD in the present study. Exposure of SPS to male rats decreases both the local content and axonal distribution of GRP in the lower lumbar spinal cord and results in an attenuation of penile reflexes in vivo. Remarkably, pharmacological stimulation of GRP receptors restores penile reflexes in SPS-exposed males, and induces spontaneous ejaculation in a dose-dependent manner. Furthermore, although the level of plasma testosterone is normal 7 days after SPS exposure, we found a significant decrease in the expression of androgen receptor protein in this spinal center.

Conclusions/Significance

We conclude that the spinal GRP system appears to be a stress-vulnerable center for male reproductive functions, which may provide new insight into a clinical target for the treatment of erectile dysfunction triggered by stress and psychiatric disorders.  相似文献   

8.
In male rats, a steroid-sensitive circuit in the forebrain regulates mating behavior. The masculine phenotype in one component of the circuit, the posterodorsal nucleus of the medial amygdala (MePD), depends on the level of circulating androgens in the adult. To investigate which gonadal steroid receptor(s) mediate sexual arousal and MePD plasticity, adult male rats were castrated and given Silastic capsules containing the nonaromatizable androgen 5alpha-dihydrotestosterone (DHT), 17beta-estradiol (E2), both steroids, or nothing. A fifth group was sham-castrated and treated with blank capsules. DHT treatment was necessary and sufficient to maintain the expression of noncontact penile erections and ultrasonic vocalizations in castrates. E2 had no significant effect on these measures. Both DHT and E2 increased olfactory investigation ("nosepokes") during the noncontact penile erection test. E2, but not DHT, maintained intromission patterns, while either steroid, alone or in combination, maintained ejaculatory behavior. Regional volume and cell soma size of the MePD both decreased following castration. Additionally, MePD cell size was lateralized, with left hemisphere neurons larger than those on the right, an effect that appeared independent of steroid manipulations. DHT and E2 each maintained neuronal soma size. E2 maintained MePD regional volume more effectively in the left MePD than in the right, which may have been due to a greater sensitivity of the left to both castration and hormone treatment. Thus, both androgen receptors and estrogen receptors appear to participate in sexual behaviors that may be mediated by the MePD in adult rats, and both receptors contribute to the steroid-regulated structural plasticity in this brain region.  相似文献   

9.
Daily injections of 2.5 mg dihydrotestosterone (DHT) for 30 days induced sexual behavior in 19% of piepuberally and 62% of postpuberally castrated New Zealand white male rabbits. Combined treatment of 2.5 mgm DHT plus 5 μgm of estradiol benzoate (EB) activated sexual behavior in 100 and 85% of prepuberally and postpuberally castrated rabbits respectively. Moreover, subjects (Ss) receiving DHT + EB displayed sexual activity in a significantly higher percentage of tests and presented a higher frequency of mounts and intromissions than those Ss receiving only DHT. The results demonstrate that estrogen synergizes with androgen (DHT) to stimulate sexual behavior in the male rabbit.  相似文献   

10.
Dorfman VB  Vega MC  Coirini H 《Life sciences》2006,78(14):1529-1534
Dorsal horn neurons of lumbosacral spinal cord innervate penile vasculature and regulate penile erection. GABAergic system is involved in the regulation of male sexual behavior. Because aging is frequently accompanied by a progressive decline in erectile function, the aim of this work was to examine age-related changes of the GABA-B receptor in the lumbar spinal cord. Sprague-Dawley rats of 10 and 21 days old, 3, 9 and 20 months old were used. GABA-B receptors were evaluated by quantitative autoradiography using [3H]-Baclofen as ligand with or without GABA (10 microM) to determine the non-specific binding. Ten days after birth a homogeneous neuroanatomical distribution pattern was found in the gray matter, however at 20-day-old adult distribution emerged becoming heterogeneous with the highest binding values at layers II-III and X. In dorsal layers a significant decrease was observed in 9-month-old rats while layer X showed an earlier decrease (21-day-old). GABA-B receptor affinity showed significant age-dependent and regional increase. The GABA-B receptor decrease in aged rats seems not to be related to this receptor inhibitory function in penile erection. Moreover the changes found in GABA-B receptor binding anatomical distribution may indicate its role in the morphological development of the lumbar spinal cord rather than in the decline of the erectile function.  相似文献   

11.
The synthetic steroid methyltrienolone (R 1881) binds specifically with high affinity to intracellular androgen receptors and is not metabolized to androstanediol. Administration of R 1881 (1 mg/day) to castrated male rats facilitated intromission in significantly more animals than did 5α-dihydrotestosterone (DHT) (1 mg/day); however, the percentage of animals ejaculating and the pattern of behavior displayed were equivalent in the two groups. Combined administration of estradiol benzoate (EB) (2 μg/day) plus either R 1881 or DHT further facilitated males' sexual performance to levels previously seen in castrated male rats of the same strain when given testosterone propionate (TP). The results suggest that conversion of DHT to 3α- or 3β-androstanediol neither detracts from nor contributes to its ability to activate sexual behavior in the male rat.  相似文献   

12.
Sexually experienced male rats were castrated and immediately received implants of Silastic tubing containing either testosterone (T), dihydrotestosterone (DHT), estradiol (E), or nothing (blank). The ability of these hormone treatments to maintain precastration levels of copulatory behavior and ex copula penile responses was assessed for 40 days after castration. Throughout the study T- and E-treated males, but not males with DHT or blank implants, maintained normal copulatory behavior. In contrast males treated with T and DHT, but not E or blanks, maintained penile responses ex copula. In blank-treated males, penile-response latencies increased more rapidly than did intromission latencies. These results, together with those of previous studies, appear to rule out a role for estradiol and reinforce the role of androgens in the activation of rats' penile-response potential ex copula. Similarly, the results support the conclusion that in castrated male rats estradiol treatment is sufficient for the activation of masculine copulatory behavior, and that the penile actions necessary for intromission are not dependent on androgen. Thus, the evocability of penile actions and their relative androgen dependence are context sensitive.  相似文献   

13.
The penile reflexes of the rat were observed on interruption of the copulatory behavior sequence after intromission and ejaculation in the initial ejaculatory series, after the penultimate series, during sexual exhaustion, and during recovery from sexual exhaustion 24 and 72 hr later. These were compared to the reflexes of the normal rat in control conditions, to those of the male rat after spinal transection, and to those of the sexually rested and sexually exhausted male rat under cortical spreading depression (CSD). It was concluded that (1) the stimuli associated with copulation evoke disinhibition of the penile reflexes, these showing the short reflex latencies observed in the spinal animal. The release of the spinal mechanisms is lost within 30 min of the last copulatory event. CSD further inhibits reflex responsivity. (2) Stimuli associated with intromission provoke acceleration of the normal rhythmic presentation of reflexes seen in the normal and spinal rat, resulting in a decrease in the duration of intervals between reflex clusters and an increase in reflex number. This excitation decays within about 15 min after intromission. (3) The increase in degree of penile extension and percentage of penile flips after spinal transection suggests tonic inhibition of reflex intensity in the normal rat. The decrease in capacity to attain full erection with the approach of sexual exhaustion suggests an increase in this inhibition. This does not recover during a rest period but instead intensifies. CSD effects did not mimic the effects of spinal transection but instead depressed reflex excitability. The relationship of these changes to the copulatory behavior pattern is discussed.  相似文献   

14.
Two experiments were performed with ovariectomized female rats in an attempt to determine whether estradiol and dihydrotestosterone work synergistically in the brain to activate mounting behavior. In Expt 1, performed in Göteborg, it was found that females treated daily with 2 μg estradiol benzoate (EB) combined with 500 μg dihydrotestosterone (DHT) displayed significantly more mounts with pelvic thrusting than other females treated with the oil vehicle, 500 μg DHT, or 2 μg EB. The behavior of rats receiving EB + DHT was indistinguishable from that of yet another group of females which received 200 μg testosterone propionate (TP). In Expt 2, performed in Rotterdam, it was found that ovariectomized female rats treated with either 200 μg TP or 2 μg EB + 200 μg dihydrotestosterone propionate (DHTP) mounted significantly more than females treated with 2 μg EB. Both clitoral size and the growth of cornified papillae on the glans clitoris were stimulated by the administration of TP or EB + DHTP. However, in no group was the frequency of mounting affected by anesthetization of the clitoris and external vagina with lidocaine paste. Lordosis quotients of females treated with EB + DHTP were significantly lower than in rats receiving either EB or TP, again regardless of whether or not the genital region was anesthetized. It is concluded that the effects of DHT on estradiol-induced mounting and receptivity most likely result from the action of this androgen on the brain, and not from the stimulatory effect which DHT may exert on genital sensory receptors.  相似文献   

15.
Sexual behavior was assessed in castrated adult CD-1 male mice given exogenous steroids under various treatment regimens. Castrated mice maintained on 20 μg testosterone (T) daily for 1 week, but given 250 μg testosterone propionate (TP) on the day of testing showed higher levels of copulatory activity than intact mice or the males receiving an additional dose of 20 μg T on the test day, although plasma testosterone levels were not different at the time of behavioral testing. Castrated males given 50, 125, or 250 μg TP for 1 week including the day of testing showed higher levels of sexual behavior than males receiving the same doses of TP only once, on the test day. A single injection of 17β-estradiol (E2) completely restored the male copulatory pattern, including ejaculation, in castrated mice under every condition examined. Testosterone and dihydrotestosterone (DHT) were less effective than E2, as was the combination of E2 and DHT. The relative efficacy of a single dose of T, DHT, and E2 plus DHT was dependent upon factors such as the delay between steroid administration and testing, as well as whether or not the castrated mice received androgen replacement prior to testing. Estradiol benzoate (E2B) was not capable of restoring sexual behavior in castrated mice in this study. The comparison of results obtained with TP, T, E2, and E2B suggests that an appreciable, but not necessarily sustained, elevation of E2 levels in the brain may be critical in the facilitation of male copulatory behavior in mice.  相似文献   

16.
The objective of this study was to perform a comprehensive morphologic analysis of developing mouse external genitalia (ExG) and to determine specific sexual differentiation features that are responsive to androgens or estrogens. To eliminate sex steroid signaling postnatally, male and female mice were gonadectomized on the day of birth, and then injected intraperitoneally every other day with DES (200ng/g), DHT (1μg/g), or oil. On day-10 postnatal male and female ExG were dissected, fixed, embedded, serially sectioned and analyzed. We identified 10 sexually dimorphic anatomical features indicative of normal penile and clitoral differentiation in intact mice. Several (but not all) penile features were impaired or abolished as a result of neonatal castration. Those penile features remaining after neonatal castration were completely abolished with attendant clitoral development in androgen receptor (AR) mutant male mice (X(Tfm)/Y and X/Y AR-null) in which AR signaling is absent both pre- and postnatally. Administration of DHT to neonatally castrated males restored development of all 10 masculine features to almost normal levels. Neonatal ovariectomy of female mice had little effect on clitoral development, whereas treatment of ovariectomized female mice with DHT induced partial masculinization of the clitoris. Administration of DES to neonatally gonadectomized male and female mice elicited a spectrum of development abnormalities. These studies demonstrate that the presence or absence of androgen prenatally specifies penile versus clitoral identity. Differentiated penile features emerge postnatally and are sensitive to and dependent upon prenatal or pre- and postnatal androgen. Emergence of differentiated clitoral features occurs postnatally in either intact or ovariectomized females. It is likely that each penile and clitoral feature has a unique time-course of hormonal dependency/sensitivity.  相似文献   

17.
This study examined the effect of testosterone and two of its metabolites on the size of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB) in adult male rats. Treatment of castrates with either testosterone or dihydrotestosterone maintained SNB cell size, although testosterone was more effective in this regard. However, estradiol, either alone or in conjunction with dihydrotestosterone treatment, had no effect on the size of the somata or nuclei of SNB motoneurons. These results indicate that testosterone affects SNB cell size by interacting with androgen receptors and that aromatized metabolites of testosterone are not involved in this aspect of motoneuronal plasticity in adulthood. Because the penile reflexes mediated by the SNB neuromuscular system are also sensitive to androgen but not estrogen treatment, morphological changes in SNB cells may contribute to the androgenic modulation of these reflexes.  相似文献   

18.
Demasculinizing action of embryonic estrogen on crowing behavior in male Japanese quails was examined. Eggs were treated with either 20 μg of estradiol benzoate (EB) or vehicle on the 10th day of incubation. Chicks hatched from both groups of eggs were injected daily with either testosterone propionate (TP; 10 μg/g b.w.), 5α-dihydrotestosterone (DHT, a non-aromatizable androgen; 10 μg/g b.w.), or vehicle from 11 to 50 days after hatching, and during this period their calling behaviors were observed. Irrespective of embryonic treatments, all birds received posthatching treatment with either TP or DHT, but not with vehicle, emitted crows in place of distress calls in a stress (non-sexual) context of being isolated in a recording chamber. The posthatching TP, but not posthatching DHT, induced crowing in a sexual context (crowing in their home-cages) from much earlier age than posthatching vehicle in the birds received control embryonic treatment with vehicle. The same TP treatment, however, completely eliminated the crowing in a sexual context in the birds received EB during their embryonic life. In the birds treated with either posthatching DHT or posthatching vehicle, the crowing in a sexual context was only slightly decreased by embryonic EB treatment. These data suggest that posthatching estrogen, derived from testosterone aromatization, enhances the demasculinizing action of embryonic estrogen, and thus strongly reduces the sexual motivation for crowing behavior. This demasculinizing action, however, would not influence vocal control system which generates acoustic pattern of crowing in the presence of androgens allowing the birds to crow in a non-sexual context.  相似文献   

19.
Sexual behavior was assessed in castrated adult CD-1 male mice given exogenous steroids under various treatment regimens. Castrated mice maintained on 20 μg testosterone (T) daily for 1 week, but given 250 μg testosterone propionate (TP) on the day of testing showed higher levels of copulatory activity than intact mice or the males receiving an additional dose of 20 μg T on the test day, although plasma testosterone levels were not different at the time of behavioral testing. Castrated males given 50, 125, or 250 μg TP for 1 week including the day of testing showed higher levels of sexual behavior than males receiving the same doses of TP only once, on the test day. A single injection of 17β-estradiol (E2) completely restored the male copulatory pattern, including ejaculation, in castrated mice under every condition examined. Testosterone and dihydrotestosterone (DHT) were less effective than E2, as was the combination of E2 and DHT. The relative efficacy of a single dose of T, DHT, and E2 plus DHT was dependent upon factors such as the delay between steroid administration and testing, as well as whether or not the castrated mice received androgen replacement prior to testing. Estradiol benzoate (E2B) was not capable of restoring sexual behavior in castrated mice in this study. The comparison of results obtained with TP, T, E2, and E2B suggests that an appreciable, but not necessarily sustained, elevation of E2 levels in the brain may be critical in the facilitation of male copulatory behavior in mice.  相似文献   

20.
Ejaculation is controlled by a spinal ejaculation generator located in the lumbosacral spinal cord, consisting in male rats of lumbar spinothalamic (LSt) cells and their inter-spinal projections to autonomic and motor centers. LSt cells co-express several neuropeptides, including gastrin releasing peptide (GRP) and enkephalin. We previously demonstrated in rats that GRP regulates ejaculation by acting within the lumbosacral spinal cord. In the present study, the hypothesis was tested that enkephalin controls ejaculation by acting on mu (MOR) or delta opioid receptors (DOR) in LSt target areas. Adult male rats were anesthetized and spinalized and received intrathecal infusions of vehicle, MOR antagonist CTOP (0.4 or 4 nmol), DOR antagonist (TIPP (0.4, 4 or 40 nmol), MOR agonist DAMGO (0.1 or 10 nmol), or DOR agonist deltorphin II (1.3 or 13 nmol). Ejaculatory reflexes were triggered by stimulation of the dorsal penile nerve (DPN) and seminal vesicle pressure and rhythmic contractions of the bulbocavernosus muscle were analyzed. Intrathecal infusion of MOR or DOR antagonists effectively blocked ejaculatory reflexes induced by DPN stimulation. Intrathecal infusion of DAMGO, but not deltorphin II triggered ejaculation in absence of DPN stimulation. Both MOR and DOR agonists facilitated ejaculatory reflexes induced by subthreshold DPN stimulation in all animals. Overall, these results support the hypothesis that enkephalin plays a critical role in the control of ejaculation in male rats. Activation of either MOR or DOR in LSt target areas is required for ejaculation, while MOR activation is sufficient to trigger ejaculation in the absence of sensory stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号