首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-interacting protein 140 (RIP140) contains multiple receptor interaction domains and interacts with retinoic acid receptors in a ligand-dependent manner. Nine LXXLL receptor-interacting motifs are organized into two clusters within this molecule, each differentially interacting with retinoic acid receptor (RAR) and retinoid X receptor (RXR). RAR interacts with the 5' cluster, whereas RXR interacts with both clusters. Additionally, a third ligand-dependent receptor-interacting domain is assigned to the very C terminus of this molecule, which contains no LXXLL motif. In mammalian cells, receptor heterodimerization is required for efficient interaction of RAR/RXR with RIP140. Furthermore, the heterodimeric, holoreceptors cooperatively interact with RIP140, which requires the activation function 2 domains of both receptors. By using different retinoic acid reporter systems, it is demonstrated that RIP140 strongly suppresses retinoic acid induction of reporter activities, but coactivator SRC-1 enhances it. Furthermore, an intrinsic repressive activity of RIP140 is demonstrated in a GAL4 fusion system. Unlike receptor corepressor, which interacts with antagonist-bound RAR/RXRs, RIP140 does not interact with antagonist-occupied RAR/RXR dimers. These data suggest that RIP140 represents a third coregulator category that is able to suppress the activation of certain agonist-bound hormone receptors.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Mifepristone, also known as RU486, is a potent glucocorticoid receptor (GR) antagonist that inhibits GR-mediated transactivation. As an alternative to existing antidepressants, RU486 has been shown to rapidly reverse psychotic depression, most likely by blocking GR. Although a number of studies have demonstrated RU486-induced GR antagonism, the precise mechanism of action still remains unclear. To identify the GR domain involved in RU486-induced suppression, GR transactivation and nuclear translocation were examined using cells transfected with human GR (hGR), Guyanese squirrel monkey GR (gsmGR), and GR chimeras into COS-1 cells. RU486 showed a much more potent suppressive effect in gsmGR-expressing cells versus hGR-expressing cells, without significant cortisol- or RU486-induced changes in nuclear translocation. A GR chimera containing the gsmGR AF1 domain (amino acids 132–428) showed a marked decrease in luciferase activity, suggesting that this domain plays an important role in RU486-induced GR antagonism. Furthermore, fluorescence recovery after photobleaching (FRAP) analysis indicated that, in the presence of RU486, gsmGR AF1 domain contributes to GR mobility in living COS-1 cells. Taken together, these results demonstrate, for the first time, that the antagonistic effects of RU486 on GR transactivation involve a specific GR domain.  相似文献   

17.
18.
In the nervous system, glucocorticoid hormones play a major role during development and throughout life. We studied the mechanisms of action of the glucocorticoid receptor (GR) and its interactions with p160 coactivator family members [steroid receptor coactivator (SRC)-1 (a and e), SRC-2 and SRC-3] in mouse Schwann cells (MSC80). We found that the three p160s were expressed in MSC80 cells. We have shown by functional overexpression and RNA interference experiments that the recruitment of these coactivators by the GR is promoter dependent. A minimal promoter containing two glucocorticoid response elements, (GRE)2-TATA, recruits SRC-1 (a and e) and SRC-3, whereas SRC-2 is excluded. Within the context of the more complex mouse mammary tumor virus promoter, GR recruits SRC-1e and SRC-2, whereas SRC-1a and SRC-3 are not implicated. Furthermore, we have identified cytosolic aspartate aminotransferase as a GR target gene in MSC80 cells by microarray experiments. The GR recruits exclusively SRC-1e in the context of the cytosolic aspartate aminotransferase promoter. Because SRC-1 is the omnipresent coactivator of GR, we further investigated the interactions between GR and this coactivator in Schwann cells by reporter assays and immunocytochemistry experiments with deleted forms of SRC-1. We have shown that SRC-1 unexpectedly interacts with GR via its two nuclear receptor binding domains, thus providing a novel mechanism of GR signaling within the nervous system.  相似文献   

19.
Hydrogen peroxide-inducible clone-5 (Hic-5), belongs to the group III LIM domain protein family and contains four carboxyl-terminal LIM domains (LIM1-LIM4). In addition to its role in focal adhesion signaling, Hic-5 acts in the nucleus as a coactivator for some steroid hormone receptors such as the glucocorticoid receptor (GR) and androgen receptor (AR). Based upon its effect on AR transactivation, Hic-5 has also been designated as ARA55. Here, we report mapping studies of Hic-5/ARA55 functional domains and establish that LIM3 and LIM4 are necessary for maximal effects on GR transactivation. However, results from yeast two-hybrid assays demonstrated that these two LIM domains together, while necessary, are not sufficient to interact with the tau2 transactivation domain of GR. LIM4 also functions as a nuclear matrix targeting sequence (NMTS) for Hic-5/ARA55, as it is both necessary and sufficient to target a heterologous protein to the nuclear matrix. Thus, as suggested from previous analysis of LIM domain-containing proteins, separate but highly related LIM domains serve distinct functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号