首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naphthalene melatoninergic ligands with alkyl groups (Me, Et, Pr, Bz) in the β position of the ethylamido chain were synthesised. The affinity of the compounds for chicken brain melatonin receptors was evaluated using 2-[125I]-iodomelatonin as the radioligand. An increase in the affinity was observed with the β-methyl derivatives and the greatest increase was seen with the (−) enantiomers. The introduction of a 2- or 7-MeO group on the naphthalene ring and the lengthening (Et, Pr) of the alkylamido chain gave potent compounds such as (−)1h (Ki=24 pM). The functional activity of these compounds was evaluated by the aggregation of melanophores in Xenopus laevis tadpoles. The potency to produce lightening of the skin of Xenopus laevis was related to the affinities values of the molecules at melatonin chicken brain receptors. The most potent ligands were found to be full agonists and compound 1h was 25 fold more potent than melatonin in this bioassay.  相似文献   

2.
Amido derivatives 10-18 of the corresponding oxyamines were synthesised as melatoninergic ligands by the reaction of hydroxyphtalimide with the halogeno derivatives or the corresponding alcohols using Mitsunobu reaction conditions. The affinity of the compounds for chicken brain melatonin receptors and recombinant human MT(1) and MT(2) receptors was evaluated using 2-[125I]-iodomelatonin as the radioligand. Overall, the introduction of an oxygen atom in the amido chain was not a favourable parameter as the compounds were less potent than the corresponding deoxy derivatives. However, nanomolar compounds were obtained with the arylethyloxy derivatives (13c (R'=nPr), chicken brain, hMT(1), hMT(2), K(i) values: 4.8, 3.86, 2.4 nM, respectively) and the 2,7-dimethoxynaphthalene derivatives (17c (R'=nPr), chicken brain, hMT(1), hMT(2), K(i) values: 0.04, 0.13, 0.1 nM, respectively). The functional activity of these compounds was evaluated by the aggregation of melanophores in Xenopus laevis tadpoles and the potency was related to the affinity of the molecules for melatonin receptors. The compounds were found to be full agonists and compound 17a was 20-fold more potent than melatonin in this bioassay.  相似文献   

3.
Focused small libraries of melatonin receptor ligands from arylalkylamine derivatives were synthesised by combinatorial chemistry using the mix and split method in the solid phase. A library of 108 compounds was then synthesised from 12 arylalkyl amines and nine carboxylic acids. The compound mixtures were evaluated on chicken brain melatonin and recombinant human mt1 and MT2 receptors. Deconvolution of the most potent mixture demonstrated the superiority of 3-methoxy and 2,5-dimethoxy substitution on the phenyl ring with isopropyl, propyl and ethyl amido chains. Several compounds with nanomolar affinity for human melatonin receptors were obtained.  相似文献   

4.
N-(Arylcyclopropyl)acetamides and N-(arylvinyl)acetamides or methyl ureas have been prepared as constrained analogues of melatonin. The affinity of these new compounds for chicken brain melatonin receptors and recombinant human MT1 and MT2 receptors was evaluated using 2-[125I]-iodomelatonin as radioligand. Strict ethylenic or cyclopropyl analogues of the commercialized agonist agomelatine (Valdoxan®) were equipotent to agomelatine in binding bioassays. However, the ethylenic analogue was more effective than the cyclopropyl one in the melanophore aggregation bioassay, but was still less potent than the disubstituted 2,7-dimethoxy-naphtalenic compounds.  相似文献   

5.
A series of 7-substituted melatonin and 1-methylmelatonin analogues were prepared and tested against human and amphibian melatonin receptors. 7-Substituents reduced the agonist potency of all the analogues in the Xenopus laevis melanophore assay, 7-bromomelatonin (5d) and N-butanoyl 7-bromo-5-methoxytryptamine (5f) being the most active compounds, but both were 42-fold less potent than melatonin (1). Whereas all the analogues bind with lower affinity at the human MT(1) receptor than melatonin, 5d, 5f and N-propanoyl 7-bromo-5-methoxytryptamine (5e) show a similar binding affinity to melatonin at the MT(2) receptor and consequently show some MT(2) selectivity. These results suggest that the receptor pocket around C-7 favours binding by an electronegative group, suggesting an electropositive region in this area of the receptor.  相似文献   

6.
A series of benzoxazole derivatives was synthesized and evaluated as melatoninergic ligands. The binding affinity of these compounds for human MT(1) and MT(2) receptors was determined using 2-[(125)I]-iodomelatonin as the radioligand. From this series of benzoxazole derivatives, compounds 14 and 17 were identified as melatonin receptor agonists.  相似文献   

7.

Background  

The melatonin receptor subfamily contains three members Mel1a, Mel1b and Mel1c, found in all vertebrates except for Mel1c which is found only in fish, Xenopus species and the chicken. Another receptor, the melatonin related receptor known as GPR50, found exclusively in mammals and later identified as a member of the melatonin receptor subfamily because of its identity to the three melatonin receptors despite its absence of affinity for melatonin. The aim of this study was to describe the evolutionary relationships between GPR50 and the three other members of the melatonin receptor subfamily.  相似文献   

8.
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. In the present study, we describe the utility of a melanophore cell line from Xenopus laevis for exploring structure-activity relationships among novel melatonin analogues and report a novel MT2-selective agonist (IIK7) and MT2-selective receptor antagonist (K185). IIK7 is a potent melatonin receptor agonist in the melanophore model, and in NIH3T3 cells expressing human mt1 and MT2 receptor subtypes. In radioligand binding experiments IIK7 is 90-fold selective for the MT2 subtype. K185 is devoid of agonist activity, but acts as a competitive melatonin antagonist in melanophores. A low concentration (10(-9) M) antagonizes melatonin inhibition of forskolin stimulation of cyclic AMP in NIH3T3 cells expressing human MT2 receptors, but has no effect in cells expressing mt1 receptors. In binding assays, K185 is 140-fold selective for the MT2 subtype.  相似文献   

9.
Xenopus laevis melanophores express a high density (B(max) 1224 fmol/mg protein) of high-affinity (K(d) 37 pm) cell membrane melatonin receptors. Treatment of melanophores with melatonin resulted in a loss of membrane melatonin receptors reaching a maximum (approximately 60%) by 6 h. In addition to receptor loss, a decline in the potency of melatonin to produce pigment aggregation was observed on prolonged treatment. However, the loss of potency (3.8-fold in 24 h and 162-fold in 96 h) was much slower than loss of receptors, and was completely prevented by inclusion of eserine (100 microm), an inhibitor of melatonin deacetylation in the culture medium. Incubation of melanophores with [(3)H]-melatonin showed that eserine prevented metabolism of melatonin to 5-methoxytryptamine. These results indicate that although receptor density does decline on prolonged treatment, this is not responsible for the diminishing melatonin potency, which is entirely due to degradation of melatonin by deacetylation and subsequent deamination in melanophores.  相似文献   

10.
A new series of substituted oxygenated heterocycles and thio-analogues were synthesized and evaluated as melatonin receptor ligands. The replacement of the indolic moiety of melatonin by heterocyclic skeleton such as 1,4-benzodioxin, 2,3-dihydro-1,4-benzodioxin, chroman, 2,3-dihydro-1,4-benzoxathiin, thiochroman, carrying the amidic chain on the aromatic ring, leads to compounds showing a weak affinity for melatonin receptors, except for the compounds 1cb and 1hb.  相似文献   

11.
A novel series of benzoxazole derivatives was synthesized and evaluated as melatoninergic ligands. The binding affinity of these compounds for human MT(1) and MT(2) receptors was determined using 2-[(125)I]-iodomelatonin as the radioligand. The results of the SAR studies in this series led to the identification of compound 28, which exhibited better MT(1) and MT(2) receptor affinities than melatonin itself. This work also established the benzoxazole nucleus as a melatoninergic pharmacophore, which served as an isosteric replacement to the previously established alkoxyaryl core.  相似文献   

12.
M Laudon  N Zisapel 《FEBS letters》1986,197(1-2):9-12
The binding of 125I-melatonin, a potent analog of melatonin, to rat brain synaptosomal preparations was investigated. 125I-melatonin bound with high affinity (Kd = 38 nM) to a single class of sites (Bmax = 81 fmol/mg protein). Kinetic studies indicated that binding was time-dependent and reversible. Specific 125I-melatonin binding was inhibited by melatonin, and was unaffected by other structurally related compounds including serotonin. Binding of 125I-melatonin was greatly reduced if the synaptosomal preparations were pretreated by heat or trypsin but was unaffected by freeze-thawing. These results suggest that 125I-melatonin may serve as a valuable probe for studying melatonin receptors.  相似文献   

13.
Mitochondrial benzodiazepine receptors (MBRs) participate in many physiological processes, such as calcium flow regulation, proliferative and respiratory cell functions, mitochondrial steroidogenesis and adaptational reactions to stress. We have found that the selective anxiolytic gidazepam has a higher affinity for CNS MBRs as compared to central benzodiazepine receptors. The ability of gidazepam to bind to MBRs probably underlies a wide spectrum of its pharmacological effects. We have studied affinities of gidazepam analogs for CNS MBRs in search for the ligands possessing higher affinity and selectivity. The experiments were carried out with male Wistar rats weighing between 200-220 g. Affinities of the investigated compounds were assessed on their ability to displace radioligand Ro5-4864 from its specific binding sites on MBRs of rat brain. Within the series of tested compounds three substances comparable on affinity with Ro5-4864 were found. Experimental results have shown that the presence of chlorine atom in o-position of 5-phenyl substituent leads to a 10 to 15-fold increase in affinity for CNS MBRs. We have also found that the essential contribution in affinity of the investigated series is brought by lipophilicity of substituent in IN-position. Our data may be useful in design and synthesis of novel potent selectively acting ligands of CNS MBRs.  相似文献   

14.
15.
Four out of the eight possible stereoisomers of 1-methyl-2-(2-methyl-1,3-dioxolan-4-yl)pyrrolidine, 1-methyl-2-(2-methyl-1,3-oxathiolan-5-yl)pyrrolidine and the corresponding iodomethylates have been synthesised. They were formally derived from hybridisation of potent though unselective agonists studied before, such as 1,3-dioxolane 1 and 1,3-oxathiolane 2, with the structure of nicotine. It was expected that, by exalting the molecular complexity of the parent compounds, in particular through stereochemical complication in the proximity of the critical cationic head of the molecule, the chance to find agonists able to discriminate among cholinergic receptors subtypes would increase. The relative and absolute configuration of the compounds obtained has been established by means of NMR spectroscopy and X-ray crystallography. In preliminary studies, their binding affinity has been evaluated on rat brain nicotinic and muscarinic receptors. While none of the compounds showed any nicotinic affinity up to the dose of 10 microM, most of the iodomethylates were endowed with promising affinity for the muscarinic receptors.  相似文献   

16.
Following our studies of the melatoninergic receptors, we have developed new tetrahydronaphthalenic derivatives of melatonin that have been tested as selective melatonin receptors ligands. Regarding the role of the phenyl substituent to obtain selective ligands, modulation of selectivity and activity have been achieved by modifications of the acyl group and substitutions on the phenyl ring. Ten of the seventeen evaluated derivatives have MT2 receptor affinity similar to that of melatonin. Moreover, we have achieved remarkable MT2 selectivity over MT1 (selectivity >100) and have been able to further extend the RSA of the tetrahydrophthalenic series. However, the compounds presented here display partial agonist or antagonist behavior instead of full agonist.  相似文献   

17.
Melatonin (5-methoxy N-acetyltryptamine) is a hormone synthesized and released from the pineal gland at night, which acts on specific high affinity G-protein coupled receptors to regulate various aspects of physiology and behaviour, including circadian and seasonal responses, and some retinal, cardiovascular and immunological functions. In amphibians, such as Xenopus laevis, another role of melatonin is in the control of skin coloration through an action on melanin-containing pigment granules (melanosomes) in melanophores. In these cells, very low concentrations of melatonin activate the Mel(1c) receptor subtype triggering movement of granules toward the cell centre thus lightening skin colour. Mel(1c) receptor activation reduces intracellular cAMP via a pertussis toxin-sensitive inhibitory G-protein (Gi), but how this and other intracellular signals regulate pigment movement is not yet fully understood. However, melanophores have proven an excellent model for the study of the molecular mechanisms which coordinate intracellular transport. Melanosome transport is reversible and involves both actin- (myosin V) and microtubule-dependent (kinesin II and dynein) motors. Melanosomes retain both kinesin and dynein during anterograde and retrograde transport, but the myosin V motor seems to be recruited to melanosomes during dispersion, where it assists kinesin II in dominating dynein thus driving net dispersion. Recent work suggests an important role for dynactin in coordinating the activity of the opposing microtubule motors. The melanophore pigment aggregation response has also played a vital role in the ongoing effort to devise specific melatonin receptor antagonists. Much of what has been learnt about the parts of the melatonin molecule required for receptor binding and activation has come from detailed structure-activity data using novel melatonin ligands. Work aiming to devise ligands specific for the distinct melatonin receptor subtypes stands poised to deliver selective agonists and antagonists which will be valuable tools in understanding the role of this enigmatic hormone in health and disease.  相似文献   

18.
A series of epiboxidine homologues, 2- and 3-isoxazole substituted 8-azabicyclo[3.2.1]octane derivatives was synthesized and evaluated as potential ligands for neuronal nicotinic acetylcholine receptors in [(3)H]cytisine labeled rat brain. The 2beta-isoxazolyl-8-azabicyclo[3.2.1]octane 9b (K(i)=3 nM) was the most potent compound of the series with a binding affinity twice that of nicotine. The 3beta-isoxazolyl-8-azabicyclo[3.2.1]octane 15b (K(i)=148 nM) exhibited moderate affinity while the corresponding 2alpha- and 3alpha-isomers exhibited micromolar binding affinity.  相似文献   

19.
A new series of melatonin (MLT) dimers were obtained by linking together two melatonin units with a linear alkyl chain through the MLT acetamido group or through a C-2 carboxyalkyl function. The binding properties of these ligands were evaluated in in vivo experiments on cloned human MT(1) and MT(2) receptors expressed in NIH3T3 rat fibroblast cells. The class of 2-carboxyalkyl dimers was the most interesting one with compounds having good MT(1)/MT(2) nanomolar affinity. The data obtained suggest that the spacer length is crucial for optimal interaction at both receptor subtypes as well as to determine functional activity of the resulting dimers.  相似文献   

20.
Pharmacology and function of melatonin receptors   总被引:13,自引:0,他引:13  
M L Dubocovich 《FASEB journal》1988,2(12):2765-2773
The hormone melatonin is secreted primarily from the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone, through an action in the brain, appears to be involved in the regulation of various neural and endocrine processes that are cued by the daily change in photoperiod. This article reviews the pharmacological characteristics and function of melatonin receptors in the central nervous system, and the role of melatonin in mediating physiological functions in mammals. Melatonin and melatonin agonists, at picomolar concentrations, inhibit the release of dopamine from retina through activation of a site that is pharmacologically different from a serotonin receptor. These inhibitory effects are antagonized by the novel melatonin receptor antagonist luzindole (N-0774), which suggests that melatonin activates a presynaptic melatonin receptor. In chicken and rabbit retina, the pharmacological characteristics of the presynaptic melatonin receptor and the site labeled by 2-[125I]iodomelatonin are identical. It is proposed that 2-[125I]iodomelatonin binding sites (e.g., chicken brain) that possess the pharmacological characteristics of the retinal melatonin receptor site (order of affinities: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-di-chloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin greater than N-acetyltryptamine greater than or equal to luzindole greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine much greater than 5-hydroxytryptamine) be classified as ML-1 (melatonin 1). The 2-[125I]iodomelatonin binding site of hamster brain membranes possesses different binding and pharmacological characteristics from the retinal melatonin receptor site and should be classified as ML-2. In summary, the recent advances in the pharmacological characterization of melatonin receptors in the central nervous system will further stimulate the search for potent and selective melatonin receptor agonists and antagonists, and should aid in our understanding of the mechanism of action of melatonin in mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号