共查询到20条相似文献,搜索用时 15 毫秒
1.
Kesavan Dineshkumar Vasudevan Aparna Liang Wu Jie Wan Mohamod Hamed Abdelaziz Zhaoliang Su Shengjun Wang Huaxi Xu 《Journal of microbiology (Seoul, Korea)》2020,58(7):531-542
Among the major bacterial secretions, outer membrane vesicles (OMVs) are significant and highly functional. The proteins and other biomolecules identified within OMVs provide new insights into the possible functions of OMVs in bacteria. OMVs are rich in proteins, nucleic acids, toxins and virulence factors that play a critical role in bacteria-host interactions. In this review, we discuss some proteins with multifunctional features from bacterial OMVs and their role involving the mechanisms of bacterial survival and defence. Proteins with moonlighting activities in OMVs are discussed based on their functions in bacteria. OMVs harbour many other proteins that are important, such as proteins involved in virulence, defence, and competition. Overall, OMVs are a power-packed aid for bacteria, harbouring many defensive and moonlighting proteins and acting as a survival kit in case of an emergency or as a defence weapon. In summary, OMVs can be defined as bug-out bags for bacterial defence and, therefore, survival. 相似文献
2.
Alexander J. F. Egan 《Molecular microbiology》2018,107(6):676-687
The outer membrane of Gram‐negative bacteria is a crucial permeability barrier allowing the cells to survive a myriad of toxic compounds, including many antibiotics. This innate form of antibiotic resistance is compounded by the evolution of more active mechanisms of resistance such as efflux pumps, reducing the already limited number of clinically relevant treatments for Gram‐negative pathogens. During cell division Gram‐negative bacteria must coordinate constriction of the outer membrane in conjunction with other crucial layers of the cell envelope, the peptidoglycan cell wall and the inner membrane. Coordination is crucial in maintaining structural integrity of the envelope, and represents a highly vulnerable time for the cell as any failure can be fatal, if not least disadvantageous. However, the molecular mechanisms of cell division and how the biogenesis of the three layers is synchronised during constriction remain largely unknown. Perturbations of the outer membrane have been shown to increase the effectiveness of antibiotics in vitro, and so with improved understanding of this process we may be able to exploit this vulnerability and improve the effectiveness of antibiotic treatments. In this review the current knowledge of how Gram‐negative bacteria facilitate constriction of their outer membranes during cell division will be discussed. 相似文献
3.
Outer membrane vesicles (OMVs) (~50–250?nm in diameter) are produced by both pathogenic and nonpathogenic bacteria as a canonical end product of secretion. In this review, we focus on the OMVs produced by gram-negative bacteria. We provide an overview of the OMV structure, various factors regulating their production, and their role in modulating host immune response using a few representative examples. In light of the importance of the diverse cargoes carried by OMVs, we discuss the different modes of their entry into the host cell and advances in the high-throughput detection of these OMVs. A conspicuous application of OMVs lies in the field of vaccination; we discuss its success in immunization against human diseases such as pertussis, meningitis, shigellosis and aqua-farming endangering diseases like edwardsiellosis. 相似文献
4.
5.
6.
Pseudomonas aeruginosa outer membrane: peptidoglycan-associated proteins. 总被引:17,自引:10,他引:7 下载免费PDF全文
The Pseudomonas aeruginosa outer membrane was isolated with attached peptidoglycan and fractionated with Triton X-100, ethylenediaminetetraacetate, and lysozyme. The data suggest that major outer membrane proteins F, H2, and I are noncovalently associated with the peptidoglycan. 相似文献
7.
Plant protoplasts: status and biotechnological perspectives 总被引:21,自引:0,他引:21
Plant protoplasts ("naked" cells) provide a unique single cell system to underpin several aspects of modern biotechnology. Major advances in genomics, proteomics, and metabolomics have stimulated renewed interest in these osmotically fragile wall-less cells. Reliable procedures are available to isolate and culture protoplasts from a range of plants, including both monocotyledonous and dicotyledonous crops. Several parameters, particularly the source tissue, culture medium, and environmental factors, influence the ability of protoplasts and protoplast-derived cells to express their totipotency and to develop into fertile plants. Importantly, novel approaches to maximise the efficiency of protoplast-to-plant systems include techniques already well established for animal and microbial cells, such as electrostimulation and exposure of protoplasts to surfactants and respiratory gas carriers, especially perfluorochemicals and hemoglobin. However, despite at least four decades of concerted effort and technology transfer between laboratories worldwide, many species still remain recalcitrant in culture. Nevertheless, isolated protoplasts are unique to a range of experimental procedures. In the context of plant genetic manipulation, somatic hybridisation by protoplast fusion enables nuclear and cytoplasmic genomes to be combined, fully or partially, at the interspecific and intergeneric levels to circumvent naturally occurring sexual incompatibility barriers. Uptake of isolated DNA into protoplasts provides the basis for transient and stable nuclear transformation, and also organelle transformation to generate transplastomic plants. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, synthesis of pharmaceutical products, and toxicological assessments. This review focuses upon the most recent developments in protoplast-based technologies. 相似文献
8.
Beis K Whitfield C Booth I Naismith JH 《International journal of biological macromolecules》2006,39(1-3):10-14
Here, we describe a simple and efficient method for the purification of Escherichia coli outer membrane proteins. We have tested this protocol for the purification of Wza and Osmoporin C (OmpC) proteins. Both proteins were purified to homogeneity, in two steps, by anion exchange and size exclusion chromatography with a final yield of 92.5 mg for the Wza protein and 291.5 mg for the OmpC protein. The purity of the samples was judged by electrophoretic analysis, mass spectrometry, single particle analysis, three-dimensional (3D) crystallisation and X-ray diffraction. 相似文献
9.
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes. 相似文献
10.
Gram-negative bacteria shed outer membrane vesicles composed of outer membrane and periplasmic components. Since vesicles from pathogenic bacteria contain virulence factors and have been shown to interact with eukaryotic cells, it has been proposed that vesicles behave as delivery vehicles. We wanted to determine whether heterologously expressed proteins would be incorporated into the membrane and lumen of vesicles and whether these altered vesicles would associate with host cells. Ail, an outer membrane adhesin/invasin from Yersinia enterocolitica, was detected in purified outer membrane and in vesicles from Escherichia coli strains DH5alpha, HB101, and MC4100 transformed with plasmid-encoded Ail. In vesicle-host cell co-incubation assays we found that vesicles containing Ail were internalized by eukaryotic cells, unlike vesicles without Ail. To determine whether lumenal vesicle contents could be modified and delivered to host cells, we used periplasmically expressed green fluorescent protein (GFP). GFP fused with the Tat signal sequence was secreted into the periplasm via the twin arginine transporter (Tat) in both the laboratory E. coli strain DH5alpha and the pathogenic enterotoxigenic E. coli ATCC strain 43886. Pronase-resistant fluorescence was detectable in vesicles from Tat-GFP-transformed strains, demonstrating that GFP was inside intact vesicles. Inclusion of GFP cargo increased vesicle density but did not result in morphological changes in vesicles. These studies are the first to demonstrate the incorporation of heterologously expressed outer membrane and periplasmic proteins into bacterial vesicles. 相似文献
11.
《Trends in microbiology》2021,29(12):1106-1116
12.
Rebière-Huët J Di Martino P Gallet O Hulen C 《Comptes rendus de l'Académie des sciences. Série III, Sciences de la vie》1999,322(12):1071-1080
Pseudomonas aeruginosa adherence is a complex phenomenon largely mediated by pili involving specific receptor-ligand interactions. Anti-fibronectin antibodies as well as plasmatic fibronectin are able to inhibit P. aeruginosa adherence onto A549 cells showing that matricial fibronectin is an actual receptor for this bacterium. Experiments performed in vitro with human plasmatic fibronectin used as receptor and outer membrane proteins of P. aeruginosa as ligands show the presence of four fibronectin-binding proteins. These proteins with molecular mass of 70 +/- 2, 60 +/- 2, 48 +/- 2 and 36 +/- 1 kDa should be adhesins of P. aeruginosa on epithelial cell matrix in a non-pilus mediated adherence. 相似文献
13.
Transport processes play a pivotal role in cellular metabolism, e.g. for the uptake of nutrients or the excretion of metabolic waste products. Moreover, they are also important in biotechnological processes such as the production of various amino acids by the use of microorganisms. The focus of this review is on bacterial amino acid transport systems, in particular those of Corynebacterium glutamicum and Escherichia coli, with respect to their function and biotechnological significance. 相似文献
14.
15.
16.
In the last years the picture of protein import into the mitochondria has become much more complicated in terms of new components and new sorting pathways. These novel findings have also changed views concerning the biogenesis pathway of mitochondrial outer membrane proteins. In addition to proteins anchored with transmembrane alpha-helices, the endosymbiotic origin of the mitochondria has resulted in the presence of transmembrane beta-barrels in this compartment. The sorting and assembly pathway of outer membrane proteins involves three machineries: the translocase of the outer membrane (TOM complex) the sorting and assembly machinery (SAM complex) and the MDM complex (mitochondrial distribution and morphology). Here we review recent developments on the biogenesis pathways of outer membrane proteins with a focus on Tom proteins, the most intensively studied class of these precursor proteins. 相似文献
17.
18.
The structure of bacterial outer membrane proteins 总被引:17,自引:0,他引:17
Schulz GE 《Biochimica et biophysica acta》2002,1565(2):308-317
Integral membrane proteins come in two types, alpha-helical and beta-barrel proteins. In both types, all hydrogen bonding donors and acceptors of the polypeptide backbone are completely compensated and buried while nonpolar side chains point to the membrane. The alpha-helical type is more abundant and occurs in cytoplasmic (or inner) membranes, whereas the beta-barrels are known from outer membranes of bacteria. The beta-barrel construction is described by the number of strands and the shear number, which is a measure for the inclination angle of the beta-strands against the barrel axis. The common right-handed beta-twist requires shear numbers slightly larger than the number of strands. Membrane protein beta-barrels contain between 8 and 22 beta-strands and have a simple topology that is probably enforced by the folding process. The smallest barrels form inverse micelles and work as enzymes or they bind to other macromolecules. The medium-range barrels form more or less specific pores for nutrient uptake, whereas the largest barrels occur in active Fe(2+) transporters. The beta-barrels are suitable objects for channel engineering, because the structures are simple and because many of these proteins can be produced into inclusion bodies and recovered therefrom in the exact native conformation. 相似文献
19.
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins. 相似文献
20.
Francisella tularensis is a gram-negative coccobacillus that is capable of causing severe, fatal disease in a number of mammalian species, including humans. Little is known about the proteins that are surface exposed on the outer membrane (OM) of F. tularensis, yet identification of such proteins is potentially fundamental to understanding the initial infection process, intracellular survival, virulence, immune evasion and, ultimately, vaccine development. To facilitate the identification of putative F. tularensis outer membrane proteins (OMPs), the genomes of both the type A strain (Schu S4) and type B strain (LVS) were subjected to six bioinformatic analyses for OMP signatures. Compilation of the bioinformatic predictions highlighted 16 putative OMPs, which were cloned and expressed for the generation of polyclonal antisera. Total membranes were extracted from both Schu S4 and LVS by spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation, which separated OMs from cytoplasmic (inner) membrane and other cellular compartments. Validation of OM separation and enrichment was confirmed by probing sucrose gradient fractions with antibodies to putative OMPs and inner membrane proteins. F. tularensis OMs typically migrated in sucrose gradients between densities of 1.17 and 1.20 g/ml, which differed from densities typically observed for other gram-negative bacteria (1.21 to 1.24 g/ml). Finally, the identities of immunogenic proteins were determined by separation on two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analysis. This is the first report of a direct method for F. tularensis OM isolation that, in combination with computational predictions, offers a more comprehensive approach for the characterization of F. tularensis OMPs. 相似文献