首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A hamster sperm 26 kDa protein (P26h) is strikingly homologous with mouse lung carbonyl reductase (MLCR) and is highly expressed in the testis, but its physiological functions in the testis are unknown. We show that recombinant P26h resembles NADP(H)-dependent MLCR in the tetrameric structure, broad substrate specificity, inhibitor sensitivity, and activation by arachidonic acid, but differs in a preference for NAD(H) and high efficiency for the oxidoreduction between 5alpha-androstane-3alpha,17beta-diol (k(cat)/K(M) = 243 s(-1) mM(-1)) and 5alpha-dihydrotestosterone (k(cat)/K(M) = 377 s(-1) mM(-1)). The replacement of Ser38-Leu39-Ile40 in P26h with the corresponding sequence (Thr38-Arg39-Thr40) of MLCR led to a switch in favor of NADP(H) specificity, suggesting the key role of the residues in the coenzyme specificity. While the P26h mRNA was detected only in the testis of the mature hamster tissues, its enzyme activity was found mainly in the mitochondrial fraction of the testis and in the nuclear fraction of the epididymis on subcellular fractionation, in which a mitochondrial enzyme, isocitrate dehydrogenase, exhibited a similar distribution pattern. The enzyme activity of P26h in the two tissue subcellular fractions was effectively solubilized by mixing with 1% Triton X-100 and 0.2 M KCl, and enhanced more than 10-fold. The enzymes purified from the two tissue fractions exhibited almost the same structural and catalytic properties as those of the recombinant P26h. These results suggest that P26h mainly exists as a tetrameric dehydrogenase in mitochondria of testicular cells and plays a role in controlling the intracellular concentration of a potent androgen, 5alpha-dihydrotestosterone, during spermatogenesis, in which it may be incorporated in mitochondrial sheaths of spermatozoa.  相似文献   

2.
Chinese hamster monomeric carbonyl reductases (CHCRs) belong to the short-chain dehydrogenase/reductase (SDR) superfamily, which is a family of enzymes that metabolize many endogenous and xenobiotic compounds. We previously cloned three carbonyl reductase cDNAs-Chcr1, Chcr2, and Chcr3. By performing spectrophotometric analyses, we indicated that the enzymes CHCR1, CHCR2, and CHCR3 had similar specificities toward steroids; only CHCR3 did not show any reactivity with prostaglandins (PGs). In the present study, we investigated the characteristics of CHCRs in detail, that is, the differences in their expression patterns, physicochemical properties, and enzymatic activities. CHCR1 exhibited sex-dependent expression patterns. CHCRs showed multiple surface potentials in the zeta potential analysis and CHCR3 exhibited an isatin reductase activity with a high K(m) value. By the present HPLC-analysis, all the three enzymes exhibited PGF(2alpha) dehydrogenase activity and could oxidize PGF(2alpha) to PGE(2) and 15-keto-PGF(2alpha), i.e., the three enzymes exhibited 9- and 15-hydroxy PG dehydrogenase activities. Moreover, 15-keto-PGE(2) was detected in a comparatively higher amount in the dehydrogenase reaction products of CHCR2 than in those of CHCR1 and CHCR3, suggesting that CHCR2 can oxidize PGE(2) and/or 15-keto-PGF(2alpha) to 15-keto-PGE(2); however, these two PGs did not seem to be efficient substrates of CHCR1. Despite the differences in the dehydrogenase activities between CHCR1 and CHCR2, PGE(2) reductase activities of the two enzymes were similar, and PGF(2alpha) was predominantly produced from PGE(2) as a result of the PG 9-keto reductase activity. On the other hand, CHCR3 exhibited a reduced PGE(2) reductase activity. In conclusion, although the CHCRs share a high degree of sequence identity (>70%), they clearly differed in their enzymatic characteristics.  相似文献   

3.
We have previously identified a hamster sperm protein, P26h, proposed to be involved in the interaction between spermatozoa and the egg's zona pellucida. In this study we investigated the mechanism of P26h accumulation on hamster spermatozoa during epididymal maturation. Immunocytochemical studies showed an accumulation of P26h on the acrosomal cap of hamster spermatozoa during epididymal transit. To document the anchoring mechanism of P26h, cauda epididymal spermatozoa were exposed to different treatments. High‐salt buffered solutions were unable to remove P26h from the surface of intact spermatozoa. P26h was released in a dose‐dependent manner when live spermatozoa were treated with a solution of phospholipase C specific to phosphatidylinositol. In contrast, the P26h remained associated to the sperm surface following treatment with trypsin. To document the transfer mechanisms of P26h on the maturing spermatozoa, prostasomes were isolated from the epididymal fluid and subjected to immunodetection. Western blots and immunogold studies showed that P26h was associated to epididymal prostasomes. Phospholipase C treatment performed on epididymal prostasomes, indicated that P26h also is anchored to these vesicles via a phosphatidylinositol. These results suggest that epididymal sperm maturation involves a cell to cell transfer of a phosphaditylinositol‐anchored protein and that prostasomes may be implicated in this process. Mol. Reprod. Dev. 52:225–233, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
5.
Ribitol dehydrogenase from Zymomonas mobilis (ZmRDH) catalyzes the conversion of ribitol to d-ribulose and concomitantly reduces NAD(P)(+) to NAD(P)H. A systematic approach involving an initial sequence alignment-based residue screening, followed by a homology model-based screening and site-directed mutagenesis of the screened residues, was used to study the molecular determinants of the cofactor specificity of ZmRDH. A homologous conserved amino acid, Ser156, in the substrate-binding pocket of the wild-type ZmRDH was identified as an important residue affecting the cofactor specificity of ZmRDH. Further insights into the function of the Ser156 residue were obtained by substituting it with other hydrophobic nonpolar or polar amino acids. Substituting Ser156 with the negatively charged amino acids (Asp and Glu) altered the cofactor specificity of ZmRDH toward NAD(+) (S156D, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 10.9, where K(m)(,NAD) is the K(m) for NAD(+) and K(m)(,NADP) is the K(m) for NADP(+)). In contrast, the mutants containing positively charged amino acids (His, Lys, or Arg) at position 156 showed a higher efficiency with NADP(+) as the cofactor (S156H, [k(cat)/K(m)(,NAD)]/[k(cat)/K(m)(,NADP)] = 0.11). These data, in addition to those of molecular dynamics and isothermal titration calorimetry studies, suggest that the cofactor specificity of ZmRDH can be modulated by manipulating the amino acid residue at position 156.  相似文献   

6.
Ye Q  Hyndman D  Li X  Flynn TG  Jia Z 《Proteins》2000,38(1):41-48
Chinese hamster ovary (CHO) reductase is an enzyme belonging to the aldo-keto reductase (AKR) superfamily that is induced by the aldehyde-containing protease inhibitor ALLN (Inoue, Sharma, Schimke, et al., J Biol Chem 1993;268: 5894). It shows 70% sequence identity to human aldose reductase (Hyndman, Takenoshita, Vera, et al., J Biol Chem 1997;272:13286), which is a target for drug design because of its implication in diabetic complications. We have determined the crystal structure of CHO reductase complexed with nicotinamide adenine dinucleotide phosphate (NADP)+ to 2.4 A resolution. Similar to aldose reductase and other AKRs, CHO reductase is an alpha/beta TIM barrel enzyme with cofactor bound in an extended conformation. All key residues involved in cofactor binding are conserved with respect to other AKR members. CHO reductase shows a high degree of sequence identity (91%) with another AKR member, FR-1 (mouse fibroblast growth factor-regulated protein), especially around the variable C-terminal end of the protein and has a similar substrate binding pocket that is larger than that of aldose reductase. However, there are distinct differences that can account for differences in substrate specificity. Trp111, which lies horizontal to the substrate pocket in all other AKR members is perpendicular in CHO reductase and is accompanied by movement of Leu300. This coupled with movement of loops A, B, and C away from the active site region accounts for the ability of CHO reductase to bind larger substrates. The position of Trp219 is significantly altered with respect to aldose reductase and appears to release Cys298 from steric constraints. These studies show that AKRs such as CHO reductase are excellent models for examining the effects of subtle changes in amino acid sequence and alignment on binding and catalysis.  相似文献   

7.
A comprehensive, structural and functional, in silico analysis of the medium-chain dehydrogenase/reductase (MDR) superfamily, including 583 proteins, was carried out by use of extensive database mining and the blastp program in an iterative manner to identify all known members of the superfamily. Based on phylogenetic, sequence, and functional similarities, the protein members of the MDR superfamily were classified into three different taxonomic categories: (a) subfamilies, consisting of a closed group containing a set of ideally orthologous proteins that perform the same function; (b) families, each comprising a cluster of monophyletic subfamilies that possess significant sequence identity among them and might share or not common substrates or mechanisms of reaction; and (c) macrofamilies, each comprising a cluster of monophyletic protein families with protein members from the three domains of life, which includes at least one subfamily member that displays activity related to a very ancient metabolic pathway. In this context, a superfamily is a group of homologous protein families (and/or macrofamilies) with monophyletic origin that shares at least a barely detectable sequence similarity, but showing the same 3D fold. The MDR superfamily encloses three macrofamilies, with eight families and 49 subfamilies. These subfamilies exhibit great functional diversity including noncatalytic members with different subcellular, phylogenetic, and species distributions. This results from constant enzymogenesis and proteinogenesis within each kingdom, and highlights the huge plasticity that MDR superfamily members possess. Thus, through evolution a great number of taxa-specific new functions were acquired by MDRs. The generation of new functions fulfilled by proteins, can be considered as the essence of protein evolution. The mechanisms of protein evolution inside MDR are not constrained to conserve substrate specificity and/or chemistry of catalysis. In consequence, MDR functional diversity is more complex than sequence diversity. MDR is a very ancient protein superfamily that existed in the last universal common ancestor. It had at least two (and probably three) different ancestral activities related to formaldehyde metabolism and alcoholic fermentation. Eukaryotic members of this superfamily are more related to bacterial than to archaeal members; horizontal gene transfer among the domains of life appears to be a rare event in modern organisms.  相似文献   

8.
A novel short-chain dehydrogenases/reductases superfamily (SDRs) reductase (PsCR) from Pichia stipitis that produced ethyl (S)-4-chloro-3-hydroxybutanoate with greater than 99% enantiomeric excess, was purified to homogeneity using fractional ammonium sulfate precipitation followed by DEAE-Sepharose chromatography. The enzyme purified from recombinant Escherichia coli had a molecular mass of about 35 kDa on SDS–PAGE and only required NADPH as an electron donor. The Km value of PsCR for ethyl 4-chloro-3-oxobutanoate was 4.9 mg/mL and the corresponding Vmax was 337 μmol/mg protein/min. The catalytic efficiency value was the highest ever reported for reductases from yeasts. Moreover, PsCR exhibited a medium-range substrate spectrum toward various keto and aldehyde compounds, i.e., ethyl-3-oxobutanoate with a chlorine substitution at the 2 or 4-position, or α,β-diketones. In addition, the activity of the enzyme was strongly inhibited by SDS and β-mercaptoethanol, but not by ethylene diamine tetra acetic acid.  相似文献   

9.
In a previous work, we presented evidence for the presence of a protein encoded by At5g50600 in oil bodies (OBs) from Arabidopsis thaliana [P. Jolivet, E. Roux, S. D'Andrea, M. Davanture, L. Negroni, M. Zivy, T. Chardot, Protein composition of oil bodies in Arabidopsis thaliana ecotype WS, Plant Physiol. Biochem. 42 (2004) 501-509]. Using specific antibodies and proteomic techniques, we presently confirm the existence of this protein, which is a member of the short-chain steroid dehydrogenase reductase superfamily. We have measured its activity toward various steroids (cholesterol, dehydroepiandrosterone, cortisol, corticosterone, estradiol, estrone) and NAD(P)(H), either within purified OBs or as a purified bacterially expressed chimera. Both enzymatic systems (OBs purified from A. thaliana seeds as well as the chimeric enzyme) exhibited hydroxysteroid dehydrogenase (HSD) activity toward estradiol (17beta-hydroxysteroid) with NAD+ or NADP+, NADP+ being the preferred cofactor. Low levels of activity were observed with cortisol or corticosterone (11beta-hydroxysteroids), but neither cholesterol nor DHEA (3beta-hydroxysteroids) were substrates, whatever the cofactor used. Similar activity profiles were found for both enzyme sources. Purified OBs were found to be also able to catalyze estrone reduction (17beta-ketosteroid reductase activity) with NADPH. The enzyme occurring in A. thaliana OBs can be classified as a NADP+-dependent 11beta-,17beta-hydroxysteroid dehydrogenase/17beta-ketosteroid reductase. This enzyme probably corresponds to AtHSD1, which is encoded by At5g50600. However, its physiological role and substrates still remain to be determined.  相似文献   

10.
11.
We present the synthesis of a new family of nonsteroidal inhibitors of 17beta-hydroxysteroid dehydrogenase, designed from flavones and chalcones. Their inhibitory potential was screened on 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl), a model enzyme of the short-chain dehydrogenase/reductase superfamily. In a series of cinnamates and related coumarin-3-carboxylates, a number of compounds proved to be potent inhibitors of both the oxidative and reductive reactions catalyzed by 17beta-HSDcl, with IC(50) values in the low micromolar range.  相似文献   

12.
The aldo-keto reductase rabbit 20alpha-hydroxysteroid dehydrogenase (rb20alpha-HSD; AKR1C5) is less selective than other HSDs, since it exerts its activity both on androgens (C19 steroids) and progestins (C21 steroids). In order to identify the molecular determinants responsible for this reduced selectivity, binary (NADPH) and ternary (NADP(+)/testosterone) complex structures were solved to 1.32A and 2.08A resolution, respectively. Inspection of the cofactor-binding cavity led to the identification of a new interaction between side-chains of residues His222 and Lys270, which cover the central phosphate chain of the cofactor, reminiscent of the "safety-belt" found in other aldo-keto reductases. Testosterone is stabilized by a phenol/benzene tunnel composed of side-chains of numerous residues, among which Phe54, which forces the steroid to take up an orientation markedly contrasting with that found in HSD ternary complexes reported. Combining structural, site-directed mutagenesis, kinetic and fluorescence titration studies, we found that the selectivity of rb20alpha-HSD is mediated by (i) the relaxation of loop B (residues 223-230), partly controlled by the nature of residue 230, (ii) the nature of the residue found at position 54, and (iii) the residues found in the C-terminal tail of the protein especially the side-chain of the amino acid 306.  相似文献   

13.
The branching of exocytic transport routes in both yeast and mammalian cells has complicated studies of the late secretory pathway, and the mechanisms involved in exocytic cargo sorting and exit from the Golgi and endosomes are not well understood. Because cargo can be sorted away from a blocked route and secreted by an alternate route, mutants defective in only one route do not exhibit a strong secretory phenotype and are therefore difficult to isolate. In a genetic screen designed to isolate such mutants, we identified a novel conserved protein, Avl9p, the absence of which conferred lethality in a vps1Delta apl2Delta strain background (lacking a dynamin and an adaptor-protein complex 1 subunit). Depletion of Avl9p in this strain resulted in secretory defects as well as accumulation of Golgi-like membranes. The triple mutant also had a depolarized actin cytoskeleton and defects in polarized secretion. Overexpression of Avl9p in wild-type cells resulted in vesicle accumulation and a post-Golgi defect in secretion. Phylogenetic analysis indicated evolutionary relationships between Avl9p and regulators of membrane traffic and actin function.  相似文献   

14.
Short-chain dehydrogenases/reductases (SDR) constitute a large family of enzymes found in all forms of life. Despite a low level of sequence identity, the three-dimensional structures determined display a nearly superimposable alpha/beta folding pattern. We identified a conserved asparagine residue located within strand betaF and analyzed its role in the short-chain dehydrogenase/reductase architecture. Mutagenetic replacement of Asn179 by Ala in bacterial 3beta/17beta-hydroxysteroid dehydrogenase yields a folded, but enzymatically inactive enzyme, which is significantly more resistant to denaturation by guanidinium hydrochloride. Crystallographic analysis of the wild-type enzyme at 1.2-A resolution reveals a hydrogen bonding network, including a buried and well-ordered water molecule connecting strands betaE to betaF, a common feature found in 16 of 21 known three-dimensional structures of the family. Based on these results, we hypothesize that in mammalian 11beta-hydroxysteroid dehydrogenase the essential Asn-linked glycosylation site, which corresponds to the conserved segment, displays similar structural features and has a central role to maintain the SDR scaffold.  相似文献   

15.
Retinol dehydrogenase 13 (RDH13) is a recently identified short-chain dehydrogenase/reductase related to microsomal retinoid oxidoreductase RDH11. In this study, we examined the distribution of RDH13 in human tissues, determined its subcellular localization and characterized the substrate and cofactor specificity of purified RDH13 in order to better understand its properties. The results of this study demonstrate that RDH13 exhibits a wide tissue distribution and, by contrast with other members of the RDH11-like group of short-chain dehydrogenases/reductases, is a mitochondrial rather than a microsomal protein. Protease protection assays suggest that RDH13 is localized on the outer side of the inner mitochondrial membrane. Kinetic analysis of the purified protein shows that RDH13 is catalytically active and recognizes retinoids as substrates. Similar to the microsomal RDHs, RDH11, RDH12 and RDH14, RDH13 exhibits a much lower Km value for NADPH than for NADH and has a greater catalytic efficiency in the reductive than in the oxidative direction. The localization of RDH13 at the entrance to the mitochondrial matrix suggests that it may function to protect mitochondria against oxidative stress associated with the highly reactive retinaldehyde produced from dietary beta-carotene.  相似文献   

16.
Sperm mitochondria undergo remodeling during posttesticular maturation that includes extensive disulfide cross-linking of proteins of the outer membrane to form the insoluble mitochondrial capsule. The relationship of these changes to mitochondrial function in mature gametes is unclear. The phospholipid hydroperoxide glutathione peroxidase (GPX4; also termed PHGPx) represents a major disulfide bond-stabilized protein of the mitochondrial capsule, and it is readily released by disulfide-reducing agents. However, in addition to GPX4, we detected a second major protein of 26 kDa (MP26) that was eluted from purified hamster sperm tails by the disulfide-reducing agent dithiothreitol. The objectives of the present study were to identify and characterize MP26 and to explore its potential role in mitochondrial function. Proteomic analysis of MP26 by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) identified 14 peptides with sequence identity to a member of the short-chain dehydrogenase/reductase superfamily termed P26h, which was implicated previously in hamster sperm-zona binding, and with high sequence similarity to mouse lung carbonyl reductase. Indirect immunofluorescence localized MP26 to the midpiece, and two-dimensional PAGE and immunoblot analysis identified a single MP26 isoform of pI 9.0. Immunoblot analyses of cauda epididymal fluid and of purified sperm plasma membranes and mitochondria revealed the exclusive localization of MP26 to the mitochondrial fraction. These data indicate that MP26 does not function in zona binding; instead, like GPX4, it may be associated with the mitochondrial capsule and play an important role in sperm mitochondrial function.  相似文献   

17.
Recently, we demonstrated that pyruvate dehydrogenase A2 (PDHA2) is tyrosine phosphorylated in capacitated hamster spermatozoa. In this report, using bromopyruvate (BP), an inhibitor of PDHA, we demonstrated that hamster sperm hyperactivation was blocked regardless of whether PDHA was inhibited prior to or after the onset of hyperactivation, but the acrosome reaction was blocked only if PDHA was inhibited prior to the onset of the acrosome reaction. Further, inhibition of PDHA activity did not inhibit capacitation-associated protein tyrosine phosphorylation observed in hamster spermatozoa. It is demonstrated that the essentiality of PDHA for sperm capacitation is probably dependent on its ability to generate effectors of capacitation such as reactive oxygen species (ROS) and cAMP, which are significantly decreased in the presence of BP. MICA (5-methoxyindole-2-carboxylic acid, a specific inhibitor of dihydrolipoamide dehydrogenase [DLD]), another component of the pyruvate dehydrogenase complex (PDHc), also significantly inhibited ROS generation and cAMP levels thus implying that these enzymes of the PDHc are required for ROS and cAMP generation. Furthermore, dibutryl cyclic adenosine monophosphate could significantly reverse the inhibition of hyperactivation observed in the presence of BP and inhibition of acrosome reaction observed in the presence of BP or MICA. The calcium ionophore, A23187, could also significantly reverse the inhibitory effect of BP and MICA on sperm acrosome reaction. These results establish that PDHA is required for hamster sperm hyperactivation and acrosome reaction, and DLD is required for hamster acrosome reaction. This study also provides evidence that ROS, cAMP, and calcium are involved downstream to PDHA.  相似文献   

18.
Three overlapping cDNA clones encoding methylmalonate-semialdehyde dehydrogenase (MMSDH; 2-methyl-3-oxopropanoate:NAD+ oxidoreductase (CoA-propanoylating); EC 1.2.1.27) have been isolated by screening a rat liver lambda gt 11 library with nondegenerate oligonucleotide probes synthesized according to polymerase chain reaction-amplified portions coding for the N-terminal amino acid sequence of rat liver MMSDH. The three clones cover a total of 1942 base pairs of cDNA, with an open reading frame of 1569 base pairs. The authenticity of the composite cDNA was confirmed by a perfect match of 43 amino acids known from protein sequencing. The composite cDNA predicts a 503 amino acid mature protein with M(r) = 55,330, consistent with previous estimates. Polymerase chain reaction was used to obtain the sequence of the 32 amino acids corresponding to the mitochondrial entry peptide. Northern blot analysis of total RNA from several rat tissues showed a single mRNA band of 3.8 kilobases. Relative mRNA levels were: kidney greater than liver greater than heart greater than muscle greater than brain, which differed somewhat from relative MMSDH protein levels determined by Western blot analysis: liver = kidney greater than heart greater than muscle greater than brain. A 1423-base pair cDNA clone encoding human MMSDH was isolated from a human liver lambda gt 11 library. The human MMSDH cDNA contains an open reading frame of 1293 base pairs that encodes the protein from Leu-74 to the C terminus. Human and rat MMSDH share 89.6 and 97.7% identity in nucleotide and protein sequence, respectively. MMSDH clearly belongs to a superfamily of aldehyde dehydrogenases and is closely related to betaine aldehyde dehydrogenase, 2-hydroxymuconic semialdehyde dehydrogenase, and class 1 and 2 aldehyde dehydrogenases.  相似文献   

19.
20.
The pathogenic bacteria Bordetella parapertussis and Bordetella bronchiseptica express a lipopolysaccharide O antigen containing a polymer of 2,3-diacetamido-2,3-dideoxy-l-galacturonic acid. The O-antigen cluster contains three neighbouring genes that encode proteins belonging to the short-chain dehydrogenase/reductase (SDR) family, wbmF, wbmG and wbmH, and we aimed to elucidate their individual functions. Mutation and complementation implicate each gene in O-antigen expression but, as their putative sugar nucleotide substrates are not currently available, biochemical characterisation of WbmF, WbmG and WbmH is impractical at the present time. SDR family members catalyse a wide range of chemical reactions including oxidation, reduction and epimerisation. Because they typically share low sequence conservation, however, catalytic function cannot be predicted from sequence analysis alone. In this context, structural characterisation of the native proteins, co-crystals and small-molecule soaks enables differentiation of the functions of WbmF, WbmG and WbmH. These proteins exhibit typical SDR architecture and coordinate NAD. In the substrate-binding domain, all three enzymes bind uridyl nucleotides. WbmG contains a typical SDR catalytic TYK triad, which is required for oxidoreductase function, but the active site is devoid of additional acid-base functionality. Similarly, WbmH possesses a TYK triad, but an otherwise feature-poor active site. Consequently, 3,5-epimerase function can probably be ruled out for these enzymes. The WbmF active site contains conserved 3,5-epimerase features, namely, a positionally conserved cysteine (Cys133) and basic side chain (His90 or Asn213), but lacks the serine/threonine component of the SDR triad and therefore may not act as an oxidoreductase. The data suggest a pathway for synthesis of the O-antigen precursor UDP-2,3-diacetamido-2,3-dideoxy-l-galacturonic acid and illustrate the usefulness of structural data in predicting protein function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号