共查询到20条相似文献,搜索用时 0 毫秒
1.
Chromosomal editing constitutes the direct and specific modification of the genetic information present in the chromosome. In the bacterium Escherichia coli, strategies were originally developed for the production of specific proteins, the genotypic improvement of strains, and the analysis of regulation of gene expression. However, with the emerging field of metabolic engineering and genomics, efficient means of targeting specific genetic mutations into the chromosome are most useful. In this review, a summary of the systems currently available to generate insertions and deletions in the chromosome of E. coli are presented, as well as the current knowledge about the genetic mechanisms responsible for these processes. 相似文献
2.
Bending of the bacteriophage lambda attachment site by Escherichia coli integration host factor 总被引:55,自引:0,他引:55
Escherichia coli integration host factor (IHF) is a small basic protein that is required for efficient integrative recombination of bacteriophage lambda. IHF binds specifically to sequences within attP, the site in bacteriophage lambda that undergoes recombination. It has been suggested that the binding of IHF creates bends in DNA so as to help attP condense into a compact structure that is activated for recombination. In this work we show that IHF binding to either of two sites found within attP does indeed produce bending of DNA. In contrast, the other recombination protein needed for integrative recombination, Int, does not appreciably bend the DNA to which it is bound. In agreement with the proposal that IHF bending is important for creating a condensed attP, bending by IHF persists in the presence of bound Int. Our conclusions about protein-directed bends in DNA are based on the study of the electrophoretic mobility of a set of permuted DNA fragments in the presence or absence of IHF and/or Int. To facilitate this study, we have constructed a novel vector that simplifies the generation of permuted fragments. This vector should be useful in studying the bending of other DNA sequences by specific binding proteins. 相似文献
3.
Summary A cloned gene with an insertion, which was made by introducing cat, was ligated to the cloning site of the phage gt11. P1 phage grown on cells lysogenized with the recombinant phage could transduce the mutant gene into the original site on the Escherichia coli chromosome. 相似文献
4.
Battaglioli EJ Baisa GA Weeks AE Schroll RA Hryckowian AJ Welch RA 《Applied and environmental microbiology》2011,77(18):6630-6635
The traditional genetic procedure for random or site-specific mutagenesis in Escherichia coli K-12 involves mutagenesis, isolation of mutants, and transduction of the mutation into a clean genetic background. The transduction step reduces the likelihood of complications due to secondary mutations. Though well established, this protocol is not tenable for many pathogenic E. coli strains, such as uropathogenic strain CFT073, because it is resistant to known K-12 transducing bacteriophages, such as P1. CFT073 mutants generated via a technique such as lambda Red mutagenesis may contain unknown secondary mutations. Here we describe the isolation and characterization of transducing bacteriophages for CFT073. Seventy-seven phage isolates were acquired from effluent water samples collected from a wastewater treatment plant in Madison, WI. The phages were differentiated by a host sensitivity-typing scheme with a panel of E. coli strains from the ECOR collection and clinical uropathogenic isolates. We found 49 unique phage isolates. These were then examined for their ability to transduce antibiotic resistance gene insertions at multiple loci between different mutant strains of CFT073. We identified 4 different phages capable of CFT073 generalized transduction. These phages also plaque on the model uropathogenic E. coli strains 536, UTI89, and NU14. The highest-efficiency transducing phage, ΦEB49, was further characterized by DNA sequence analysis, revealing a double-stranded genome 47,180 bp in length and showing similarity to other sequenced phages. When combined with a technique like lambda Red mutagenesis, the newly characterized transducing phages provide a significant development in the genetic tools available for the study of uropathogenic E. coli. 相似文献
5.
We obtained a series of Escherichia coli strains in which gapA, gapB, or both had been deleted. Delta gapA strains do not revert on glucose, while delta gapB strains grow on glycerol or glucose. We showed that gapB-encoded protein is expressed but at a very low level. Together, these results confirm the essential role for gapA in glycolysis and show that gapB is dispensable for both glycolysis and the pyridoxal biosynthesis pathway. 相似文献
6.
lambda gua transducing bacteriophages were used to identify and sequence the secondary attachment site for lambda in the guaB gene of Escherichia coli. The sequence matched the primary core sequence at nine positions, and a putative integrase binding-site overlapped the left core-arm junction. Recombinational crossover occurred between nucleotides -3 and +2 of the core region. 相似文献
7.
Temperate coliphage HK253: attachment site and restricted transduction of proAB mutants of Escherichia coli K-12. 总被引:1,自引:0,他引:1
下载免费PDF全文

Temperate coliphage HK253 integrates near the proAB locus on the Escherichia coli K-12 chromosome. It can bring about specialized transduction of proAB and phoE mutants of E. coli, but it is incapable of general transduction. One of the proline-transducing particles was found to be nondefective. 相似文献
8.
9.
The secondary attachment site for bacteriophage lambda in the proA/B gene of Escherichia coli 总被引:5,自引:0,他引:5
We have determined the nucleotide sequence of a secondary λ attachment site in , a site that accounts for 3% of lysogens isolated from Escherichia coli strains deleted for the primary site. Direct sequence analysis of the transducing bacteriophages carrying the left and right att junctions, as well as the recombinant pro+ phage reveals that the site shares an 11-nucleotide interrupted homology with the core sequence of the primary site. We have compared the att site with other secondary attachment sites to gain insights into the structural features important for λ integration. 相似文献
10.
Nucleotide sequence of a secondary attachment site for bacteriophage lambda on the Escherichia coli chromosome. 总被引:1,自引:1,他引:1
下载免费PDF全文

The nucleotide sequence of a secondary attachment site for bacteriophage lambda was determined in a region near the rrnB gene at 88 min on the E. coli chromosome. The sequence has a 8 base pair interrupted homology GCT TTTTA to the common core of the primary attachment site (attB) and the corresponding phage sequence (attP). The site of crossover during integration lies probably between nucleotides -3 and +1. The flanking regions have no obvious homology to the arms of either attP or attB. 相似文献
11.
Chromosomal location of the attachment site for the PA-2 prophage in Escherichia coli K-12.
下载免费PDF全文

The chromosomal attachment site for the PA-2 prophage is located between dsd and aroC at the approximately 50 min on the Escherichia coli K-12 genetic map. The attachment site is designated attPA-2. 相似文献
12.
13.
L-Serine is usually produced from glycine. We have genetically engineered Escherichia coli to produce L-serine from glucose intracellularly. D-3-Phosphoglycerate dehydrogenase (PGDH, EC 1.1.1.95) in E. coli catalyzes the first committed step in L-serine formation but is inhibited by L-serine. To overcome this feedback inhibition, both the His(344) and Asn(346) residues of PGDH were converted to alanine and the mutated PGDH (PGDH(dr)) became insensitive to L-serine. However, overexpression of PGDH(dr) gave no significant increase of L-serine accumulation but, when L-serine deaminase genes (sdaA, sdaB and tdcG) were deleted, serine accumulated: (1) deletion of sdaA gave up to 0.03 mmol L-serine/g; (2) deletion of both sdaA and sdaB accumulated L-serine up to 0.09 mmol/g; and (3) deletion of sdaA, sdaB and tdcG gave up to 0.13 mmol L-serine/g cell dry wt. 相似文献
14.
15.
16.
17.
Ivan Pakvan Erika Salaj-mic Ivana Ivani-Bae Ksenija Zahradka eljko Trgovevi Krunoslav Bri-Kosti 《FEMS microbiology letters》2001,205(2):299-303
The repair of double strand breaks after gamma-irradiation in wild-type Escherichia coli lysogenic for lambda cI857 red3 is more efficient when lambda Gam protein is present. This phenomenon, called gam dependent radioresistance, requires the interaction of RecBCD enzyme and Gam protein. We compared cell survival after gamma-irradiation in wild-type and mutant lysogens with and without induction of Gam by transient heat treatment of the cells (6 min, 42 degrees C). The main conclusions are: (1) the RecBCD-Gam pathway of recombination repair is similar but not equivalent to RecBCD, a pathway operating in recD mutants; (2) the RecBCD-Gam pathway is dependent on recJ, recQ and recN gene products and it is proposed that the RecBCD-Gam complex has ability to load RecA protein onto single strand DNA. 相似文献
18.
19.
S. Dekio 《Molecular & general genetics : MGG》1971,113(1):20-30
Summary Two 50s (50-10 and 50-12) and two 30s (30-4 and 30-7) ribosomal proteins could be distinguished between Shigella dysenteriae Sh/s and Escherichia coli K-12 JC411 with CMC column chromatography. On the other hand, E. coli K-12 AT2472 was shown to have a 30s ribosomal protein, 30-6(AT), which is specific to this strain and distinguishable from 30-6 of other E. coli K-12 strains. Transduction experiments by phage Plkc between Sh. dysenteriae Sh/s and E. coli ATSPCO1, a spectinomycin resistant mutant derived from AT2472 in which the 30-4 protein is altered, indicated that the genes specifying the above five ribosomal protein components are located in the streptomycin region on the E. coli chromosome.The gene order for three 50s (50-8, 50-10 and 50-12) and three 30s [str (30-?), 30-4 and 30-6] ribosomal proteins on the chromosome was determined by transduction technique between Sh. dysenteriae Sh/s and E. coli ATSPC01, between E. coli ATSPC01 and E. coli ER05 (an erythromycin resistant strain in which the 50-8 protein is altered), and between Sh. dysenteriae Sh/s and E. coli ERSPC14 (str
s
spc
r
ery
r), respectively. It was found that these protein genes are arranged on the chromosome in the order of str (30-?)-30-4-30-6-50-8-50-10-50-12. 相似文献
20.
The integration frequency of phage att80 immlambdac1857 into the chromosome of a mutant strain H47 Escherichia coli K-12 deleted for the normal prophage insertion site is found to be about 20-fold decreased as compared with its integration into the wild type strain. The most of the resulting lysogens contain the prophage at the secondary attachment site of the mutant bacterial chromosome which is preferentially utilized for prophage insertion. This attachment site (att80-II) is located close to his-genes on the chromosome of H47 strain. Prophage curing procedure of such abnormal lysogens results in the appearance of rare auxotrophic heat-resistant survivors with the His- phenotype. In some cases the prophage insertion can induce an inversion of a neighbouring genetic region. Such lysogens contain the purC gene near prophage located at the att80-II site, and after curing they segregate the heat-resistant His- and Pur- colonies. 相似文献