首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human APE/Ref-1 protein   总被引:13,自引:0,他引:13  
  相似文献   

2.
3.
4.
5.
APE/Ref-1在中枢神经系统氧化应激反应中的保护作用   总被引:1,自引:0,他引:1  
化学性质活泼的自由基(free radicals)在保持产生和清除平衡的稳衡性动态下能履行正常的生理功能,但超过生物体的清除能力则可导致多种疾病.无嘌呤/无嘧啶核酸内切酶/氧化还原因子1(apurinic/apyrimidinic endonuclease/redox-factor 1, APE/Ref-1)是一种体内分布广泛的多功能蛋白质,通过修复DNA的无嘌呤/无嘧啶(apurinic/apyrimidinic, AP)部位参与DNA的碱基切除修复(base excision repair, BER).APE/Ref-1还可通过还原许多转录因子的半胱氨酸残基使之易于与DNA结合而调控真核细胞的基因表达.APE/Ref-1的抗细胞凋亡作用使其在自由基所致中枢神经系统病变如脑缺血-再灌注损伤、神经退行性病变、脑动脉粥样硬化中发挥了重要作用.  相似文献   

6.
7.
8.
9.
10.
HAP1, also known as APE/Ref-1, is the major apurinic/apyrimidinic (AP) endonuclease in human cells. Previous structural studies have suggested a possible role for the Asp-210 residue of HAP1 in the enzymatic function of this enzyme. Here, we demonstrate that substitution of Asp-210 by Asn or Ala eliminates the AP endonuclease activity of HAP1, while substitution by Glu reduces specific activity ~500-fold. Nevertheless, these mutant proteins still bind efficiently to oligonucleotides containing either AP sites or the chemically unrelated bulky p-benzoquinone (pBQ) derivatives of dC, dA and dG, all of which are substrates for HAP1. These results indicate that Asp-210 is required for catalysis, but not substrate recognition, consistent with enzyme kinetic data indicating that the HAP1–D210E protein has a 3000-fold reduced Kcat for AP site cleavage, but an unchanged Km. Through analysis of the binding of Asp-210 substitution mutants to oligonucleotides containing either an AP site or a pBQ adduct, we conclude that the absence of Asp-210 allows the formation of a stable HAP1–substrate complex that exists only transiently during the catalytic cycle of wild-type HAP1 protein. We interpret these data in the context of the structure of the HAP1 active site and the recently determined co-crystal structure of HAP1 bound to DNA substrates.  相似文献   

11.
12.
APE1/Ref-1, normally localized in the nucleus, is a regulator of the cellular response to oxidative stress. Cytoplasmic localization has been observed in several tumors and correlates with a poor prognosis. Because no data are available on liver tumors, we investigated APE1/Ref-1 subcellular localization and its correlation with survival in 47 consecutive patients undergoing hepatocellular carcinoma (HCC) resection. APE1/Ref-1 expression was determined by immunohistochemistry in HCC and surrounding liver cirrhosis (SLC) and compared with normal liver tissue. Survival probability was evaluated using Kaplan-Meier curves (log-rank test) and Cox regression. Cytoplasmic expression of APE1/Ref-1 was significantly higher in HCC than in SLC (P = 0.00001); normal liver showed only nuclear reactivity. Patients with poorly differentiated HCC showed a cytoplasmic expression three times higher than those with well-differentiated HCC (P = 0.03). Cytoplasmic localization was associated with a median survival time shorter than those with negative cytoplasmic reactivity (0.44 compared with 1.64 years, P = 0.003), and multivariable analysis confirmed that cytoplasmic APE1/Ref-1 localization is a predictor of survival. Cytoplasmic expression of APE1/Ref-1 is increased in HCC and is associated with a lower degree of differentiation and a shorter survival time, pointing to the use of the cytoplasmic localization of APE1/Ref-1 as a prognostic marker for HCC.  相似文献   

13.
14.

Background

Green tea is a rich source of polyphenols, mainly catechins (flavanols), which significantly contribute to the beneficial health effects of green tea in the prevention and treatment of various diseases. In this study the effects of four green tea catechins on protein ERp57, also known as protein disulfide isomerase isoform A3 (PDIA3), have been investigated in an in vitro model.

Methods

The interaction of catechins with ERp57 was explored by fluorescence quenching and surface plasmon resonance techniques and their effect on ERp57 activities was investigated.

Results

A higher affinity was observed for galloylated cathechins, which bind close to the thioredoxin-like redox-sensitive active sites of the protein, with a preference for the oxidized form. The effects of these catechins on ERp57 properties were also investigated and a moderate inhibition of the reductase activity of ERp57 was observed as well as a strong inhibition of ERp57 DNA binding activity.

Conclusions

Considering the high affinity of galloylated catechins for ERp57 and their capability to inhibit ERp57 binding to other macromolecular ligands, some effects of catechins interaction with this protein on eukaryotic cells may be expected.

General significance

This study provides information to better understand the molecular mechanisms underlying the biological activities of catechins and to design new polyphenol-based ERp57-specific inhibitors.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号