首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Investigation of 15 poliovirus temperature-sensitive (ts) mutants by using physiological tests [formation of virus-specific antigen and ribonucleic acid (RNA) under nonpermissive conditions] permitted us to divide them into three groups. From each group, one mutant was selected (ts 2, 5, 11), and a comparative study of poliovirus-related particle (5, 10, 73, and 150S) formation under permissive (36 C) and nonpermissive (40 C) conditions was carried out. The ts 2 and ts 11 are mutants with greatly reduced RNA synthesis which at 40 C produce particles with a sedimentation constant of 5S, and the ts 5 (RNA(+)) mutant produces both 5 and 10S particles. The relationship between different temperature-sensitive defects in the mutants is discussed. The results obtained indicate a possible role of 5S protein structures in morphogenesis of poliovirus.  相似文献   

3.
The synthesis and processing of virus-specific precursor polypeptides in NIH/3T3 cells infected at the permissive temperature (31 degrees C) with temperature-sensitive (ts) mutants of Rauscher murine leukemia virus was studied in pulse-chase experiments at the permissive and nonpermissive (39 degrees C) temperatures. The newly synthesized virus-specific polypeptides were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis after immunoprecipitation with polyvalent and monospecific antisera against Rauscher murine leukemia virus proteins. In cells infected with ts mutants defective in early replication steps (the early mutants ts17 and ts29), and ts mutants defective in postintegration steps (the late mutants ts25 and ts26), the processing of the primary gag gene product was impaired at the nonpermissive temperature. gag-pr75 of all four mutants was converted into gag-pr65; however, gag-pr65 accumulated at the nonpermissive temperature, and the main internal virion polypeptide p30 was not formed. Therefore, the proteolytic cleavage is blocked beyond gag-pr65. Concomitantly, the formation of the env gene-related polypeptide p12(E) of all four mutants was blocked at the restrictive temperature. In contrast, cells infected with the late mutant ts28, which produced noninfectious virions at 39 degrees C, showed a normal turnover of the gag and env precursor polypeptides.  相似文献   

4.
5.
6.
7.
The temperature-sensitive defects of virus mutants isolated from L cells persistently infected with Newcastle disease virus (NDV) were analyzed. Genetic grouping of the mutants by complementation tests was attempted by using several different methods, including yield analysis, RNA synthesis, and heterozygote formation at 42 to 43 C, the nonpermissive temperature. In each case, specific interference prevented detection of complementation. This interference was shown to occur prior to or at the level of virus RNA synthesis. Temperature-shift experiments with five different NDV(pi) clones showed that virus replication begun at 37 C could not be completed at the nonpermissive temperature. The activity of the NDV-specific RNA-dependent RNA polymerase in the cytoplasm of infected chicken embryo cells was not stable and could not be demonstrated directly. However, indirect measurement of RNA polymerase activity at the nonpermissive temperature was accomplished by studying the kinetics of virus-specific RNA synthesis in infected cells after temperature shift. Two types of response were obtained: with three NDV(pi) clones, virus-specific RNA synthesis ceased immediately upon transfer of infected cells to 42 to 43 C, whereas in cells infected with two other NDV(pi) clones, RNA synthesis continued for several hours at this temperature. These results suggested that there may be two types of ts defects in NDV(pi), both associated with virus-specific RNA polymerase activity.  相似文献   

8.
A crude replication complex prepared from enterovirus 70-infected cells was used to study the temperature-sensitive characteristic of the virus. The complex showed a temperature sensitivity in the in vitro incorporation of radiolabeled ribonucleoside triphosphate. The endonuclease itself did not account for the restricted RNA synthesis at the nonpermissive temperature. Analyses of the in vitro products by both gel electrophoresis and sucrose density gradient centrifugation showed that the complex synthesized three types of viral RNA only when incubated for a short period of time at the nonpermissive temperature. When the replication complex was treated with a detergent (deoxycholic acid), incorporation of ribonucleoside triphosphate into RNA at the permissive temperature was reduced to the level of that at the nonpermissive temperature. In addition, the in vitro RNA synthesis by the enterovirus 70 replication complex at the permissive temperature required a higher concentration of ATP than of other ribonucleoside triphosphates, whereas such a preference for ATP was not found in the reaction at the nonpermissive temperature. The results indicate that the initiation step of RNA synthesis by the complex is blocked at the nonpermissive temperature. The possible implications of these findings are discussed.  相似文献   

9.
10.
11.
12.
Two temperature-sensitive (ts) mutants of mammalian cell lines (AF8 and cs4D3) that arrest in G1 at the nonpermissive temperature were fused with chick erythrocytes and the induction of DNA synthesis was studied in the resulting heterokaryons. While both AF8 and cs4D3 could induce DNA synthesis in chick nuclei at the permissive temperature, they both failed to do so when arrested in G1 at the nonpermissive temperature. When S phase AF8 cells were fused with chick erythrocytes, chick nuclei were reactivated even if the heterokaryons were incubated at the temperature nonpermissive for AF8. A third ts mutant, ts111, that is blocked in cytokinesis but continues to synthesize DNA, reactivated chick nuclei at both permissive and nonpermissive temperature. It is concluded that chick erythrocyte reactivation depends on the presence of S phase-specific factors.  相似文献   

13.
14.
Fourteen temperature-sensitive mutants of human adenovirus type2, which differed in their plaquing efficiencies at at the permissive and nonpermissive temperatures by 4 to 5 orders of magnitude, were isolated. These mutants, which could be assigned to seven complementation groups, were tested for their capacity to synthesize adenovirus DNA at the nonpermissive temperature. Three mutants in three different complementation groups proved deficient in viral DNA synthesis. The DNA-negative mutant H2ts206 complemented the DNA-negative mutants H5ts36 and H5ts125, whereas mutant H2ts201 complemented H5ts36 only. Among the DNA-negative mutants, H2ts206 synthesized the smallest amount of viral DNA at the nonpermissive temperature (39.5 C). Data obtained in temperature shift experiments indicated that a very early function was involved in temperature sensitivity. In keeping with this observation, early virus-specific mRNA was not detected in cells infected with H2ts206 and maintained at 39.5 C. Prolonged (52 h) incubation of cells infected with H2ts206 at the nonpermissive temperature led to the synthesis of a high-molecular-weight form of viral DNA.  相似文献   

15.
16.
A temperature-sensitive cell cycle mutant of the BHK cell line   总被引:19,自引:0,他引:19  
A temperature-sensitive growth mutant derived from the BHK 21 cell Line, ts AF8, was found to have greatly reduced DNA synthesis at the nonpermissive temperature. This reduction is mainly due to a decrease in the frequency of cells synthesizing DNA. Upon shift up, ts AF8 becomes blocked in the G1 phase of the cell cycle. The cells acquire elevated cAMP levels and a unimodal distribution of DNA content, equivalent to that of G1 cells at the permissive temperature, Ts AF8 cells blocked at the G1/S boundary with hydroxyurea will enter S when shifted to the nonpermissive temperature. On the other hand, ts AF8 cells arrested m G1 by serum deprivation and shifted to the nonpermissive temperature at the moment of serum addition do not enter S, while those synchronized by isoleucine deprivation and shifted at the time of isoleucine addition will enter S. These data suggest that the cycle arrest point of the ts AF8 mutation is located in G1 between the blocks induced by serum starvation and isoleucine deprivation. The reduction in DNA synthesis caused by the ts AF8 mutation is not reversed by infection or transformation with Polyoma virus. Mitochondrial DNA continues to be synthesized at wild-type levels at the nonpermissive temperature.  相似文献   

17.
BHK cells infected with the temperature-sensitive mutant ts13 of herpes simplex virus type 2 at a nonpermissive temperature lack the alkaline nuclease activity, which is induced by the mutant at a permissive temperature and by wild-type virus at either temperature. For ts13, enzyme activity could be induced by a temperature shift to permissive conditions, but not in the presence of cycloheximide. After a shift from permissive to nonpermissive conditions in the presence of cycloheximide, the activity was stable in wild-type, but not in mutant-infected, cells. After extensive purification, the wild-type nuclease was fourfold more heat stable in the presence of substrate than was the mutant enzyme. Mixtures of both purified enzymes showed the predicted intermediate stabilities. The results strongly suggest that the enzyme is virus coded and that the mutant possesses a lesion in the structural gene of the enzyme.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号