首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bao L  Miao ZW  Zhou PA  Jiang Y  Sha YL  Zhang RJ  Tang YC 《FEBS letters》1999,446(2-3):351-354
A 22-mer peptide, identical to the primary sequence of domain I segment 3 (IS3) of rat brain sodium channel I, was synthesized. With the patch clamp cell-attached technique, single channel currents could be recorded from the patches of cultured rat myotube membranes when the patches were held at hyperpolarized potentials and the electrode solution contained NaCl and 1 microM IS3, indicating that IS3 incorporated into the membranes and formed ion channels. The single channel conductances of IS3 channels were distributed heterogeneously, but mainly in the range of 10-25 pS. There was a tendency that the mean open time and open probability of IS3 channels increased and the mean close time decreased with the increasing of hyperpolarized membrane potentials. IS3 channels are highly selective for Na+ and Li+ but not for Cl- and K+, similar to the authentic Na+ channels.  相似文献   

2.
Properties of ion channels formed by Staphylococcus aureus delta-toxin   总被引:10,自引:0,他引:10  
The delta-toxin of Staphylococcus aureus has been investigated in terms of its potential to form ion channels in planar lipid bilayers formed at the tip of patch electrodes. Channel formation has been shown to occur for delta-toxin concentrations in the range 0.1 to 2.0 microM. In 0.5 M KCl, two major classes of channels were seen--'small' with conductances of 70-100 pS, and 'large' with a conductance of approx. 450 pS. Current-voltage relationships for lipid bilayers containing several delta-toxin channels revealed both voltage-dependent and independent components to channel gating. Reversal potential measurements showed the channels to be cation selective. In the presence of 3.0 M KCl, the channel gating kinetics were complex, with multiple open and closed states. The results are interpreted in terms of a model for the channel consisting of a hexameric cluster of alpha-helical delta-toxin molecules.  相似文献   

3.
Thionins are small cysteine-containing, amphipathic plant proteins found in seeds and vegetative tissues of a number of plant genera. Many of them have been shown to be toxic to microorganisms such as fungi, yeast, and bacteria and also to mammalian cells. It has been suggested that thionins are present in seeds to protect them, and the germinating seedling, from attack by phytopathogenic microorganisms, but the mechanism by which they kill cells remains unclear. Using electrophysiological measurements, we have shown that beta-purothionin from wheat flour can form cation-selective ion channels in artificial lipid bilayer membranes and in the plasmalemma of rat hippocampal neurons. We suggest that the generalized toxicity of thionins is due to their ability to generate ion channels in cell membranes, resulting in the dissipation of ion concentration gradients essential for the maintenance of cellular homeostasis.  相似文献   

4.
Mechanosensitive ion channels   总被引:41,自引:0,他引:41  
  相似文献   

5.
Ion channels are proteins, which facilitate the ions flow throught biological membranes. In recent years the structure as well as the function of the plasma membrane ion channels have been well investigated. The knowledge of intracellular ion channels however is still poor. Up till now, the calcium channel described in endoplasmatic reticulum and mitochondrial porine are the examples of intracellular ion channels, which have been well characterized. The mitochondrial potassium channels: regulated by ATP (mitoK(ATP)) and of big conductance activated by Ca2+ (mitoBK(Ca)), which were described in inner mitochondrial membrane, play a key role in the protection of heart muscle against ischemia. In this review the last date concerning the mitochondrial ion channels as well as they function in cell metabolism have been presented.  相似文献   

6.
7.
Booth IR  Edwards MD  Miller S 《Biochemistry》2003,42(34):10045-10053
  相似文献   

8.
9.
10.
11.
Voltage-sensitive ion channels   总被引:23,自引:0,他引:23  
L Y Jan  Y N Jan 《Cell》1989,56(1):13-25
  相似文献   

12.
13.
14.
The article concentrates on the concepts of mechanosensitive ion channels that are present in practically all cells of an organism. Considered are kinetic scheme and activation principles of mechanic-sensitive ion channels. The forces affecting those channels are discussed in detail. The qualities of the channels in lipid monolayer, bilayer and real cell membrane are under consideration. Discussed are various models that analyze possibilities of channel opening depending on the membrane tension. Under discussion are the data received from studying single channels, currents in whole-cell configuration and cloned channels built into bilayer, liposomes and membrane blebs. Problems of transmitting mechanic energy to the channel through the bilayer and through the cytoskeleton are investigated. Inhibitors and activators of mechanosensitive ion channels are mentioned and their effects are considered. The functional classification of mechanosensitive ion channels is given. Described are cation SACs, potassium SACs, Ca(2+)-sensitive and Ca(2+)-insensitive SACs, anion SACs, nonselective SACs and SICs. It is proved that mechanosensitive ion channels can produce considerable currents enough to change the cell electrogenesis.  相似文献   

15.
Reconstitution of ion channels   总被引:3,自引:0,他引:3  
  相似文献   

16.
Posidonia oceanica (L) Delile, a seagrass endemic of the Mediterranean sea, provides food and shelter to marine organisms. As environment contamination and variation in physico‐chemical parameters may compromise the survival of the few Posidonia genotypes living in the Mediterranean, comprehending the molecular mechanisms controlling Posidonia growth and development is increasingly important. In the present study the properties of ion channels in P. oceanica plasma membranes studied by the patch‐clamp technique in protoplasts obtained from the young non‐photosynthetic leaves were investigated. In protoplasts that were presumably originated from sheath cells surrounding the vascular bundles of the leaves, an outward‐rectifying time‐dependent channel with a single channel conductance of 58 ± 2 pS which did not inactivate, was selective for potassium and impermeable to monovalent cations such as Na+, Li+ and Cs+ was identified. In the same protoplasts, an inward‐rectifying channel that has a time‐dependent component with single channel conductance of the order of 10 pS, a marked selectivity for potassium and no permeation to sodium was also identified, as was a third type of channel that did not display any ionic selectivity and was reversibly inhibited by tetraethylammonium and lanthanum. A comparison of Posidonia channel characteristics with channels identified in terrestrial plants and other halophytic plants is included.  相似文献   

17.
The amyloidoses consist of human and animal chronic, progressive, and sometimes fatal diseases that are characterized by the deposition of insoluble proteinaceous amyloid fibrils in various tissues. Despite the biochemical diversity of amyloids, they share certain properties. The amphipathic and the charged nature of many amyloid-forming peptides point to their intrinsic ability to form diverse beta-sheet-based aggregates and channel types in negatively charged membranes. We hypothesize that the formation of heterogeneous channels represents a common cytotoxic mechanism that accentuates the changes in the signal transduction that underlie amyloid-induced cell malfunction. One group of amyloid-forming peptides that could mediate their action via the formation of heterogeneous channels includes the extensively examined prions and amyloid beta protein that are associated with conformational neurodegenerative diseases. The aim of this study is to examine heterogeneous channels formed in bilayers with amyloid-forming peptides as a common mechanism of malfunction of signal transduction. The observed amyloid-formed channel types include the following. (1) Natriuretic peptides: (i) 68-pS H2O2- and Ba2+-sensitive channel with fast kinetics. The fast channel had three modes (spike mode, burst mode, and open mode), which differ in their kinetics but not in their conductance properties; (ii) a 273-pS inactivating large conductance channel; and (iii) a 160-pS transiently activated channel. (2) Prions: (i) a 140-pS GSSG- and TEA-sensitive channel with fast kinetics; (ii) a 41-pS dithiothreitol (DTT)-sensitive channel with slow kinetics; (iii) a 900 to 1444-pS large channel. (3) Amyloid beta protein: (i) a 17 to 63-pS AbetaP[1-40]-formed "bursting" fast cation channel, (ii) the AbetaP[1-40]-formed "spiky" fast cation channel with a similar kinetics to the "bursting" fast channel except for the absence of the long intraburst closures, (iii) 275-pS AbetaP[1-40]-formed medium conductance channel, and (iv) 589- to 704-pS AbetaP[1-40]-formed inactivating large conductance channel. This heterogeneity is one of the most common features of these charged cytotoxic amyloid-formed channels, reflecting these channels' ability to modify multiple cellular functions. Although the diversity of these aggregated-peptide-formed channels may indicate that a stochastic mechanism governs their formation, the fact that certain channel types are often observed point to preferential channel protein conformations. In addition, the fact that other amyloids have similar structural properties (e.g. hydrophobicity, charged residues, and beta-structural linkages, suggests that, despite the intrinsic ability to form diverse conformations, certain conformations and, hence, certain channel types could be a common pathologic conformation among these amyloid-forming peptides. It is concluded that conformation-based channel diversity is an important mechanism for enhancing the toxicity of amyloid-forming peptides. The cytotoxic nature of these self-associated beta-based protein channels suggests that under normal physiological conditions cells employ well-evolved protective mechanisms against seeding and/or propagation of channel-forming peptides; for example, (a) compartmentalization of these peptides as membrane bound in internal vesicles and/or (b) degradation of these peptides by enzymes. The pharmacological diversity of the amyloid-forming channels implies that multiple therapeutic interventions may be necessary for blocking and reversing heterogeneous channel formations and preventing their associated diseases.  相似文献   

18.
It now appears that most of the ion channels discovered in glia are similar or identical to their neuronal equivalents. Recent studies show that glial cells can sense and respond to neuronal signals and that neurons may influence both the development and maintenance of ion channel expression of certain glial cells. Although they lack excitability, glia are probably active participants in brain function.  相似文献   

19.
Banghart MR  Volgraf M  Trauner D 《Biochemistry》2006,45(51):15129-15141
Ion channels are gated by a variety of stimuli, including ligands, voltage, membrane tension, temperature, and even light. Natural gates can be altered and augmented using synthetic chemistry and molecular biology to develop channels with completely new functional properties. Light-sensitive channels are particularly attractive because optical manipulation offers a high degree of spatial and temporal control. Over the last few decades, several channels have been successfully rendered responsive to light, including the nicotinic acetylcholine receptor, gramicidin A, a voltage-gated potassium channel, an ionotropic glutamate receptor, alpha-hemolysin, and a mechanosensitive channel. Very recently, naturally occurring light-gated cation channels have been discovered. This review covers the molecular principles that guide the engineering of light-gated ion channels for applications in biology and medicine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号