首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Investigation of immunogold-silver staining by electron microscopy   总被引:1,自引:0,他引:1  
Summary Deposition of metallic silver on colloidal gold immunoreagents has been shown to be a very sensitive immunostaining technique capable of detecting low levels of immunoreactivity in tissue sections. Using electron microscopy we have shown that immunolabelling is highest with small sizes of gold which can penetrate sections better and achieve higher densities of particles in the section than larger particles. Chemical permeabilisation of the embedding medium aids the penetration of colloidal gold. The silver enhancement step in immunogold-silver staining was shown to be progressive, allowing optimisation of staining and the selection of the final size of silver deposits required. Some poorly understood features of the technique are rationalised and the additional knowledge gained will aid the wider application of this method.  相似文献   

2.
We evaluated the contribution of darkfield and epi-polarization microscopy to the detection of leukocyte cell surface antigens with immunogold-silver staining (IGSS). Lymphocyte cell surface differentiation antigens were labeled with monoclonal antibodies and IGSS as described for brightfield microscopy. In darkfield and epi-polarization microscopy the labeling appeared as bright spots on a dark background. The sensitivity of detection was much higher than that of brightfield microscopy. Sixteenfold higher dilutions of the monoclonal antibody could be used to detect all cells expressing the antigen in the cell suspension. However, non-specific staining was also better visualized. The latter could be reduced to a level comparable to that of brightfield microscopy only by use of weaker labeling conditions. A 25% reduction of the silver enhancement time was necessary for this purpose. However, these weaker labeling conditions also reduced the intensity of the specific staining. Therefore, the efficiency of IGSS, as detected with darkfield and epi-polarization microscopy, was only fourfold greater than that found with brightfield microscopy or that of an immunofluorescence procedure. Especially in combination with transmitted light, to improve cell identification, epi-polarization microscopy is a reliable and sensitive method for detection of immunogold-silver-labeled cell surface antigens for diagnostic and research purposes.  相似文献   

3.
An immunogold-silver staining technique for detection of cell-surface antigens in cell suspensions was developed. Leukocyte cell suspensions were first incubated with monoclonal antibodies directed against cell-surface antigens and then with colloidal gold-labeled goat anti-mouse antibodies. Cytocentrifuge preparations of the cell suspensions were immersed in a physical developer containing silver lactate and hydroquinone as reducing substance. The preparations were then counterstained and mounted. In light microscopy, cells reacting with the monoclonal antibodies showed dark granules on their surface membrane. An optimal morphology, as revealed by a May-Grünwald-Giemsa counterstain, permitted accurate cell identification. The labeling was influenced by the gold particle diameter and the concentration of the gold reagents, by the duration of incubation in the physical developer, and by the composition and temperature of this medium. The T-cell subsets enumerated with this method in the peripheral blood of normal adults were identical to those found with other methods. The sensitivity of the technique was comparable with that of immunofluorescence microscopy. This immunogold-silver staining procedure proved to be a reliable tool for detection of cell-surface antigens in light microscopy.  相似文献   

4.
5.
Negative staining is a simple and widely used method for enhancing the contrast of dispersed biological materials for electron microscopy. A comparison of the collagen fibril negative staining pattern firstly with the positive staining pattern and secondly with the sequence data is described. The interpretation of the collagen negative staining pattern and the effects of fixatives on this are also discussed.  相似文献   

6.
7.
8.
BrdU-substituted Chinese hamster chromosomes were treated with a hot Na2HPO4 solution and stained with Giemsa to produce sister chromatid differential staining (SCD). The process of SCD was examined with the Nomarski differential interference microscope and the scanning electron microscope. After the Na2HPO4 treatment alone, unifilarly BrdU-substituted (TB) chromatids appeared somewhat more severely collapsed than the bifilarly substituted (BB) chromatids. Subsequent Giemsa staining, however, brought about pronounced piling up of the Giemsa dye on the TB-chromatids but not on the BB-ones, causing highly distinct differential Giemsa staining as well as a marked differentiation in surface topography between the sister chromatids. Removal of the Giemsa dye from the differentially Giemsa stained chromosomes resulted in a disappearance of such a pronounced topographic differentiation.  相似文献   

9.
M Locke  P Huie 《Tissue & cell》1977,9(2):347-371
Bismuth salts on aldehyde fixed tissue give a highly selective pattern of staining suitable for light and electron microscopy. Structures stained include the nucleolus, ribosomes, inter- and perichromatin granules, the Golgi complex beads and the outer face of the tubule doublets of mouse sperm, certain neurosecretory vesicles believed to contain biogenic amines, some junctions (some central synapses, neuromuscular junctions, tight junctions), specialized membranes such as the post acrosomal dense lamina of mouse sperm and the inner alveolar membrane of Paramecium, and a variety of structures associated with the cytoplasmic face of membranes, such as plasma membrane plaques, cleavage furrows, the leading edge of the spreading acrosome and sperm annuli.Staining is not reduced by nucleases and spot tests show no reaction between nucleic acids and bismuth under conditions similar to those used to stain tissues. However, spot tests do show strong binding of bismuth by basic proteins and by some phosphorylated molecules.It is hypothesized that bismuth reacts with cell components in two ways, distinguishable by their glutaraldehyde sensitivity. For example, staining of the nucleolus and ribosomes is blocked by glutaraldehyde but the inter- and perichromatin granules and the GC beads are unaffected. Spot tests show that basic proteins (histones, protamines, polylysine and polyargenine) and other molecules with free amino groups (5HT, tryptamine, dopamine) bind bismuth strongly, a reaction that is blocked to varying degrees by glutaraldehyde. We presume that most bismuth staining of tissues is due to reaction with amine groups and is glutaraldehyde sensitive and some may be due to guanidine groups which are less sensitive to fixation by glutaraldehyde. Organic phosphates may be the cause of the glutaraldehyde insensitive staining since ATP and some other phosphates bind bismuth in a reaction that is not blocked by glutaraldehyde.  相似文献   

10.
Proper staining of grids is critical for transmission electron microscopy (TEM). Staining must be done as quickly as possible using minimal reagents and with consideration for the environment. We developed a new device for efficient staining of multiple TEM grids. We studied reagent evaporation, rinsing volume, flow rate and re-use of uranyl acetate, and provide here a procedure for efficient staining using the new device. Our device permits TEM grids to be stained with less reagent than alternative staining apparatuses; staining requires a total volume of 260 μl for five grids. Reagent evaporation is less than 6% even if used at 37° C. Moreover, our staining apparatus reduces chemical waste and shortens experiment time by staining several grids simultaneously. Our staining device is a compromise between time-consuming single grid processing and expensive commercial devices that consume large amounts of reagents.  相似文献   

11.
12.
Bacterial biofilms, i.e. surface-associated cells covered in hydrated extracellular polymeric substances (EPS), are often studied with high-resolution electron microscopy (EM). However, conventional desiccation and high vacuum EM protocols collapse EPS matrices which, in turn, deform biofilm appearances. Alternatively, wet-mode environmental scanning electron microscopy (ESEM) is performed under a moderate vacuum and without biofilm drying. If completely untreated, however, EPS is not electron dense and thus is not resolved well in ESEM. Therefore, this study was towards adapting several conventional SEM staining protocols for improved resolution of biofilms and EPS using ESEM. Three different biofilm types were used: 1) Pseudomonas aeruginosa unsaturated biofilms cultured on membranes, 2) P. aeruginosa cultured in moist sand, and 3) mixed community biofilms cultured on substrates in an estuary. Working with the first specimen type, a staining protocol using ruthenium red, glutaraldehyde, osmium tetroxide and lysine was optimized for best topographic resolution. A quantitative image analysis tool that maps relief, newly adopted here for studying biofilms, was used to compare micrographs. When the optimized staining and ESEM protocols were applied to moist sand cultures and aquatic biofilms, the smoothening effect that bacterial biofilms have on rough sand, and the roughening that aquatic biofilms impart on initially smooth coupons, were each quantifiable. This study thus provides transferable staining and ESEM imaging protocols suitable for a wide range of biofilms, plus a novel tool for quantifying biofilm image data.  相似文献   

13.
14.
15.
16.
Summary 1. Two types of lead staining for electron microscopy, with different staining mechanisms, are described.2. The first type of staining, leading to an increase of the contrast already available, is referred to as intensifying staining.3. The second type of staining leads to the appearance of lead precipitates at several sites where PAS-positive material can be expected. This type of staining is therefore referred to as PAS-like staining.4. Preliminary hypotheses for the mechanisms of these different stainings are given.With 10 Figures in the Text  相似文献   

17.
Summary After perfusion fixation of the rat kidney with glutaraldehyde, and postfixation of the renal cortex with osmium-low ferrocyanide (40 mM OsO4+6 mM K4Fe(CN)6 in 0.135 M phosphate buffer, pH 8.0), secondary lysosomes of proximal tubule cells carry acoat of electron dense material on the inner surface of the lysosomal membrane. This coat separates matrix and membrane of lysosomes, and corresponds in location and width to the electron translucent halo of conventionally processed lysosomes in TEM. The material which forms the coat, is stained by phosphotungstic acid at pH 0.3, and by periodic acid — thiocarbohydrazide — silver proteinate more intensively than the cell surface coat of the same cell; it contains a high concentration of hydroxyl,vicinal-glycol and α-aminoalcohol groups. Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

18.
19.
Aqueous dispersions of lipids isolated from spinach chloroplast membranes were studied by electron microscopy after negative staining with phosphotungstic acid. Influence of low temperature (5°C for 24 h) was also investigated. It was observed that when contacted with water, these lipids, as such, formed multilamellar structures. Upon sonication, these multilamellar structures gave rise to a clear suspension of unilamellar vesicles varying in size (diameter) between 250 and 750 Å. When samples of sonicated unilamellar vesicles were stored at 5°C for 24 h or more, they revealed a variety of lipid aggregates including liposomes, cylindrical rods (about 100 Å wide and up to 3600 Å long), and spherical micellar structures (100–200 Å in diameter)—thus indicating phase separation of lipids.  相似文献   

20.
It is approximately 34 years since the first high resolution images of T2 bacteriophages were recorded in the electron microscope using a method which was to be known as ‘negative staining’. Details of the historical background and the original experiments which led up to the negative staining method are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号