首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The formyl peptide receptor (FPR) family is involved in host defence against pathogens, but also in sensing internal molecules that may constitute signals of cellular dysfunction. It includes three subtypes in human and other primates. FPR responds to formyl peptides derived from bacterial and mitochondrial proteins. FPRL1 displays a large array of exogenous and endogenous ligands, including the chemokine variant sCKβ8-1, the neuroprotective peptide humanin, and lipoxin A4. Two high affinity agonists (F2L and humanin) were recently described for FPRL2. In mouse, eight FPR-related receptors have been described. Fpr1 is the ortholog of human FPR, while fpr2 appears to share many ligands with human FPRL1. Altogether, the physiological role of the FPR family is still incompletely understood, due in part to the large variety of ligands, the redundancy with other chemoattractant agents, and the lack of clear orthologs between human and mouse receptors. Newly developed tools will allow to study further this family of receptors.  相似文献   

2.
3.
Rabiet MJ  Huet E  Boulay F 《Biochimie》2007,89(9):1089-1106
Leukocyte recruitment to sites of inflammation and infection is dependent on the presence of a gradient of locally produced chemotactic factors. This review is focused on current knowledge about the activation and regulation of chemoattractant receptors. Emphasis is placed on the members of the N-formyl peptide receptor family, namely FPR (N-formyl peptide receptor), FPRL1 (FPR like-1) and FPRL2 (FPR like-2), and the complement fragment C5a receptors (C5aR and C5L2). Upon chemoattractant binding, the receptors transduce an activation signal through a G protein-dependent pathway, leading to biochemical responses that contribute to physiological defense against bacterial infection and tissue damage. C5aR, and the members of the FPR family that were previously thought to be restricted to phagocytes proved to have a much broader spectrum of cell expression. In addition to N-formylated peptides, numerous unrelated ligands were recently found to interact with FPR and FPRL1. Novel agonists include both pathogen- and host-derived components, and synthetic peptides. Antagonistic molecules have been identified that exhibit limited receptor specificity. How distinct ligands can both induce different biological responses and produce different modes of receptor activation and unique sets of cellular responses are discussed. Cell responses to chemoattractants are tightly regulated at the level of the receptors. This review describes in detail the regulation of receptor signalling and the multi-step process of receptor inactivation. New concepts, such as receptor oligomerization and receptor clustering, are considered. Although FPR, FPRL1 and C5aR trigger similar biological functions and undergo a rapid chemoattractant-mediated phosphorylation, they appear to be differentially regulated and experience different intracellular fates.  相似文献   

4.
F2L (formylpeptide receptor (FPR)-like (FPRL)-2 ligand), a highly conserved acetylated peptide derived from the amino-terminal cleavage of heme-binding protein, is a potent chemoattractant for human monocytes and dendritic cells, and inhibits LPS-induced human dendritic cell maturation. We recently reported that F2L is able to activate the human receptors FPRL-1 and FPRL2, two members of the FPR family, with highest selectivity and affinity for FPRL2. To facilitate delineation of mechanisms of F2L action in vivo, we have now attempted to define its mouse receptors. This is complicated by the nonequivalence of the human and mouse FPR gene families (three vs at least eight members, respectively). When cell lines were transfected with plasmids encoding the eight mouse receptors, only the one expressing the receptor Fpr2 responded to F2L (EC(50) approximately 400 nM for both human and mouse F2L in both calcium flux and cAMP inhibition assays). This value is similar to F2L potency at human FPRL1. Consistent with this, mouse neutrophils, which like macrophages and dendritic cells express Fpr2, responded to human and mouse F2L in both calcium flux and chemotaxis assays with EC(50) values similar to those found for Fpr2-expressing cell lines ( approximately 500 nM). Moreover, neutrophils from mice genetically deficient in Fpr2 failed to respond to F2L. Thus, Fpr2 is a mouse receptor for F2L, and can be targeted for the study of F2L action in mouse models.  相似文献   

5.
Trp-Lys-Tyr-Val-D-Met (WKYMVm) is a synthetic leukocyte-activating peptide postulated to use seven-transmembrane, G protein-coupled receptor(s). In the study to characterize the receptor(s) for WKYMVm, we found that this peptide induced marked chemotaxis and calcium flux in human phagocytes. The signaling induced by WKYMVm in phagocytes was attenuated by high concentrations of the bacterial chemotactic peptide fMLP, suggesting that WKYMVm might use receptor(s) for fMLP. This hypothesis was tested by using cells over expressing genes encoding two seven-transmembrane receptors, formyl peptide receptor (FPR) and formyl peptide receptor-like 1 (FPRL1), which are with high and low affinity for fMLP, respectively. Both FPR- and FPRL1-expressing cells mobilized calcium in response to picomolar concentrations of WKYMVm. While FPRL1-expressing cells migrated to picomolar concentrations of WKYMVm, nanomolar concentrations of the peptide were required to induce migration of FPR-expressing cells. In contrast, fMLP elicited both calcium flux and chemotaxis only in FPR-expressing cells with an efficacy comparable with WKYMVm. Thus, WKYMVm uses both FPR and FPRL1 to stimulate phagocytes with a markedly higher efficacy for FPRL1. Our study suggests that FPR and FPRL1 in phagocytes react to a broad spectrum of agonists and WKYMVm as a remarkably potent agonist provides a valuable tool for studying leukocyte signaling via these receptors.  相似文献   

6.
F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein. Very recently, F2L was identified as an endogenous chemoattractant peptide acting specifically through formyl peptide receptor-like (FPRL)2. In the present study, we report that F2L stimulates chemotactic migration in human neutrophils. However, F2L inhibits formyl peptide receptor (FPR) and FPRL1 activities, resulting in the complete inhibition of intracellular calcium increases, and superoxide generation induced by N-formyl-Met-Leu-Phe, MMK-1, or Trp-Lys-Tyr-Met-Val-d-Met (WKYMVm) in human neutrophils. In terms of the inhibitory role of F2L on FPR- and FPRL-mediated signaling, we found that F2L competitively inhibits the binding of (125)I-WKYMVm to its specific receptors, FPR and FPRL1. F2L is the first endogenous molecule that inhibits FPR- and FPRL1-mediated signaling, and is expected to be useful in the study of FPR and FPRL1 signaling and in the development of drugs to treat diseases involving the FPR family of receptors.  相似文献   

7.
Neutrophils express the G protein-coupled N-formyl peptide receptor (FPR) and its homologue FPRL1, whereas monocytes express FPR, FPRL1, and FPRL2, an orphan receptor sharing 83% amino acid identity with FPRL1. FPRL1 is a promiscuous receptor activated by serum amyloid A and by different synthetic peptides, including the hexapeptide Trp-Lys-Tyr-Met-Val-d-Met-NH(2) (WKYMVm). By measuring calcium flux in HL-60 cells transfected with FPR, FPRL1, or FPRL2, we show that WKYMVm activated all three receptors, whereas the l-conformer WKYMVM activated exclusively FPRL1 and FPRL2. The functionality of FPRL2 was further assessed by the ability of HL-60-FPRL2 cells to migrate toward nanomolar concentrations of hexapeptides. The half-maximal effective concentrations of WKYMVM for calcium mobilization in HL-60-FPRL1 and HL-60-FPRL2 cells were 2 and 80 nm, respectively. Those of WKYMVm were 75 pm and 3 nm. The tritiated peptide WK[3,5-(3)H(2)]YMVM bound to FPRL1 (K(D) approximately 160 nm), but not to FPR. The two conformers similarly inhibited binding of (125)I-labeled WKYMVm to FPRL2-expressing cells (IC(50) approximately 2.5-3 micrometer). Metabolic labeling with orthophosphoric acid revealed that FPRL1 was differentially phosphorylated upon addition of the l- or d-conformer, indicating that it induced different conformational changes. In contrast to FPRL1, FPRL2 was already phosphorylated in the absence of agonist and not evenly distributed in the plasma membrane of unstimulated cells. However, both receptors were internalized upon addition of either of the two conformers. Taken together, the results indicate that neutrophils are activated by WKYMVM through FPRL1 and that FPRL2 is a chemotactic receptor transducing signals in myeloid cells.  相似文献   

8.
Epithelial cells of the alimentary tract play a central role in the mucosal host defence against pathogens and in the recognition of agonists that interact with mucosal surfaces. In particular, the formyl peptide receptor (FPR) family and their three human subtypes: FPR, formyl-peptide-receptor-like-1 (FPRL1) and FPRL2, are involved in the host defence against pathogens that mediate epithelial responses thus upregulating inflammation. To elucidate the mechanisms by which FPR function, we examined the influence of phospholipase D (PLD) 1 and 2 on the activity and signal transduction of human enterocytes cell line HT29. PLD is a key enzyme involved in secretion, endocytosis and receptor signalling. We inhibited PLD1 and 2 by small interference RNA (siRNA) and determined the activity of formyl peptide receptors using Western blotting and cAMP level measurements. We then analyzed the distribution of formyl peptide receptors FPR, FPRL1 and FPRL2 compared to a control. In this study, we demonstrated that the depletion of PLD1 and 2 resulted in a marked reduction of formyl peptide receptor activity due to inhibited extracellular-signal regulated kinases 1/2 (ERK1/2), phosphorylation and cAMP level reduction. In addition, we observed an intracellular accumulation of FPR, FPRL1 and FPRL2 as a result of receptor recycling inhibition using fluorescence microscopy. The constitutive internalization rate was unaffected. Our results support the importance of PLD1 and 2 in formyl peptide receptor function and the role of endocytosis, receptor recycling and reactivation for receptor activity.  相似文献   

9.
Bacteria have developed mechanisms to escape the first line of host defense, which is constituted by the recruitment of phagocytes to the sites of bacterial invasion. We previously described the chemotaxis inhibitory protein of Staphylococcus aureus, a protein that blocks the activation of neutrophils via the formyl peptide receptor (FPR) and C5aR. We now describe a new protein from S. aureus that impaired the neutrophil responses to FPR-like1 (FPRL1) agonists. FPRL1 inhibitory protein (FLIPr) inhibited the calcium mobilization in neutrophils stimulated with MMK-1, WKYMVM, prion-protein fragment PrP(106-126), and amyloid beta(1-42). Stimulation with low concentrations of fMLP was partly inhibited. Directed migration was also completely prevented toward MMK-1 and partly toward fMLP. Fluorescence-labeled FLIPr efficiently bound to neutrophils, monocytes, B cells, and NK cells. HEK293 cells transfected with human C5aR, FPR, FPRL1, and FPRL2 clearly showed that FLIPr directly bound to FPRL1 and, at higher concentrations, also to FPR but not to C5aR and FPRL2. FLIPr can reveal unknown inflammatory ligands crucial during S. aureus infections. As a novel described FPRL1 antagonist, it might lead to the development of therapeutic agents in FPRL1-mediated inflammatory components of diseases such as systemic amyloidosis, Alzheimer's, and prion disease.  相似文献   

10.
Formyl peptide receptor-like 1 (FPRL1) is an important classical chemoattractant receptor that is expressed in phagocytic cells in the peripheral blood and brain. Recently, various novel agonists have been identified from several origins, such as host-derived molecules. Activation of FPRL1 is closely related to inflammatory responses in the host defense mechanism and neurodegenerative disorders. In the present study we identified several novel peptides by screening hexapeptide libraries that inhibit the binding of one of FPRL1's agonists (Trp-Lys-Tyr-Met-Val-D-Met-CONH(2) (WKYMVm)) to its specific receptor, FPRL1, in RBL-2H3 cells. Among the novel peptides, Trp-Arg-Trp-Trp-Trp-Trp-CONH(2) (WRWWWW (WRW(4))) showed the most potent activity in terms of inhibiting WKYMVm binding to FPRL1. We also found that WRW(4) inhibited the activation of FPRL1 by WKYMVm, resulting in the complete inhibition of the intracellular calcium increase, extracellular signal-regulated kinase activation, and chemotactic migration of cells toward WKYMVm. For the receptor specificity of WRW(4) to the FPR family, we observed that WRW(4) specifically inhibit the increase in intracellular calcium by the FPRL1 agonists MMK-1, amyloid beta42 (Abeta42) peptide, and F peptide, but not by the FPR agonist, fMLF. To investigate the effect of WRW(4) on endogenous FPRL1 ligand-induced cellular responses, we examined its effect on Abeta42 peptide in human neutrophils. Abeta42 peptide-induced superoxide generation and chemotactic migration of neutrophils were inhibited by WRW(4), which also completely inhibited the internalization of Abeta42 peptide in human macrophages. WRW(4) is the first specific FPRL1 antagonist and is expected to be useful in the study of FPRL1 signaling and in the development of drugs against FPRL1-related diseases.  相似文献   

11.
A leucine zipper-like domain, T21/DP107, located in the amino terminus of the ectodomain of gp41, is crucial to the formation of fusogenic configuration of the HIV-1 envelope protein gp41. We report that the synthetic T21/DP107 segment is a potent stimulant of migration and calcium mobilization in human monocytes and neutrophils. The activity of T21/DP107 on phagocytes was pertussis toxin-sensitive, suggesting this peptide uses Gi-coupled seven-transmembrane receptor(s). Since the bacterial chemotactic peptide fMLP partially desensitized the calcium-mobilizing activity of T21/DP107 in phagocytes, we postulated that T21/DP107 might preferentially use a lower affinity fMLP receptor. By using cells transfected to express cloned prototype chemotactic N-formyl peptide receptor (FPR) or its variant, FPR-like 1 (FPRL1), we demonstrate that T21/DP107 activates both receptors but has a much higher efficacy for FPRL1. In addition, T21/DP107 at nM concentrations induced migration of FPRL1-transfected human embryonic kidney 293 cells. In contrast, fMLP did not induce significant chemotaxis of the same cells at a concentration as high as 50 microM. Although a lipid metabolite, lipoxin A4, was a high-affinity ligand for FPRL1, it was not reported to induce Ca2+ mobilization or chemotaxis in FPRL1-transfected cells. Therefore, T21/DP107 is a first chemotactic peptide agonist identified thus far for FPRL1. Our results suggest that this peptide domain of the HIV-1 gp41 may have the potential to activate host innate immune response by interacting with FPR and FPRL1 on phagocytes.  相似文献   

12.
Pleiotropic roles of formyl peptide receptors   总被引:4,自引:0,他引:4  
FPR and FPRL1 belong to the seven-transmembrane, G protein-coupled chemoattractant receptor superfamily. Because of their capacity to interact with bacterial chemotactic formylated peptides, these receptors are thought to play a role in host defense against microbial infection. Recently, a variety of novel agonists have been identified for these receptors, including several host-derived endogenous molecules that are involved in proinflammatory responses. Most notably is the use of FPRL1 by at least three amyloidogenic protein and peptide ligands, the serum amyloid A (SAA), the 42 amino acid form of beta amyloid (Abeta(42)), and the prion peptide PrP106-126, to chemoattract and activate human phagocytic leukocytes. These new findings have greatly expanded the functional scope of the formyl peptide receptors and call for more in-depth investigation of the role of these receptors in pathophysiological conditions.  相似文献   

13.
Le Y  Ye RD  Gong W  Li J  Iribarren P  Wang JM 《The FEBS journal》2005,272(3):769-778
Formyl peptide receptor-like 1 (FPRL1) is a seven transmembrane domain, G protein-coupled receptor that interacts with a variety of exogenous and host-derived agonists. In order to identify domains crucial for ligand recognition by FPRL1, we used chimeric receptors with segments in FPRL1 replaced by corresponding amino acid sequences derived from the prototype formyl peptide receptor FPR. The chimeric receptors were stably transfected into human embryonic kidney epithelial cells and the capacity of the cells to migrate in response to formyl peptide receptor agonists was evaluated. Our results showed that multiple domains in FPRL1 are involved in the receptor response to chemotactic agonists with the sixth transmembrane domain and the third extracellular loop playing a prominent role. Interestingly, the N-terminus and a segment between the fourth transmembrane domain and the third intracellular loop of FPRL1 are important for receptor interaction with a 42 amino acid amyloid beta peptide (Abeta42), an Alzheimer's disease-associated FPRL1 agonist, but not with MMK-1, a synthetic FPRL1 agonist, suggesting that diverse agonists may use different domains in FPRL1. Considering the potential importance of FPRL1 in inflammation and neurodegenerative diseases, the identification of functional domains in this receptor will provide valuable information for the design of specific receptor antagonists.  相似文献   

14.

Background  

The formylpeptide receptor family members FPR and FPRL1, expressed in myeloid phagocytes, belong to the G-protein coupled seven transmembrane receptor family (GPCRs). They share a high degree of sequence similarity, particularly in the cytoplasmic domains involved in intracellular signaling. The established model of cell activation through GPCRs states that the receptors isomerize from an inactive to an active state upon ligand binding, and this receptor transformation subsequently activates the signal transducing G-protein. Accordingly, the activation of human neutrophil FPR and FPRL1 induces identical, pertussis toxin-sensitive functional responses and a transient increase in intracellular calcium is followed by a secretory response leading to mobilization of receptors from intracellular stores, as well as a release of reactive oxygen metabolites.  相似文献   

15.
The N-formyl peptide receptor-like 1 (FPRL1) is a G protein-coupled receptor (GPCR) that transmits intracellular signals in response to a variety of agonists, many of them being clearly implicated in human pathology. beta-arrestins are adaptor proteins that uncouple GPCRs from G protein and regulate receptor internalization. They can also function as signal transducers through the scaffolding of signaling molecules, such as components of the extracellular signal-regulated kinase (ERK) cascade. We investigated the role of beta-arrestins in ligand-induced FPRL1 internalization and signaling. In HEK293 cells expressing FPRL1, fluorescence microscopy revealed that agonist-stimulated FPRL1 remained co-localized with beta-arrestins during endocytosis. Internalization of FPRL1, expressed in a mouse embryonic fibroblast (MEF) cell line lacking endogenous beta-arrestins, was highly compromised. This distinguishes FPRL1 from the prototypical formyl peptide receptor FPR that is efficiently internalized in the absence of beta-arrestins. In both HEK293 and MEF cells, FPRL1-mediated ERK1/2 activation was a rapid and transient event. The kinetics and extent of ERK1/2 activation were not significantly modified by beta-arrestin overexpression. The pattern of FPRL1-mediated ERK1/2 activation was similar whether cells express or not beta-arrestins. Furthermore, treatment of the FPRL1 expressing cells with pertussis toxin inhibited ERK1/2 activation in MEF and in HEK293 cells. These results led us to conclude that activation of ERK1/2 mediated by FPRL1 occurs primarily through G protein signaling. Since beta-arrestin-mediated signaling has been observed essentially for receptors coupled to G proteins other than G(i), this may be a characteristic of G(i) protein-coupled chemoattractant receptors.  相似文献   

16.
We have recently identified a peptide derived from the secreted portion of the HSV-2 glycoprotein G, gG-2p20, to be proinflammatory. Based on its ability to activate neutrophils and monocytes via the formyl peptide receptor (FPR) to produce reactive oxygen species (ROS) that down-regulate NK cell function, we suggested it to be of importance in HSV-2 pathogenesis. We now describe the effects of an overlapping peptide, gG-2p19, derived from the same HSV-2 protein. Also, this peptide activated the ROS-generating NADPH-oxidase, however, only in monocytes and not in neutrophils. Surprisingly, gG-2p19 did not induce a chemotactic response in the affected monocytes despite using a pertussis toxin-sensitive, supposedly G-protein-coupled receptor. The specificity for monocytes suggested that FPR and its homologue FPR like-1 (FPRL1) did not function as receptors for gG-2p19, and this was also experimentally confirmed. Surprisingly, the monocyte-specific FPR homologue FPRL2 was not involved either, and the responsible receptor thus remains unknown so far. However, the receptor shares some basic signaling properties with FPRL1 in that the gG-2p19-induced response was inhibited by PBP10, a peptide that has earlier been shown to selectively inhibit FPRL1-triggered responses. We conclude that secretion and subsequent degradation of the HSV-2 glycoprotein G can generate several peptides that activate phagocytes through different receptors, and with different cellular specificities, to generate ROS with immunomodulatory properties.  相似文献   

17.
Basophils circulate in the blood and are able to migrate into tissues at sites of inflammation. Urokinase plasminogen activator (uPA) binds a specific high affinity surface receptor (uPAR). The uPA-uPAR system is crucial for cell adhesion and migration, and tissue repair. We have investigated the presence and function of the uPA-uPAR system in human basophils. The expression of uPAR was found at both mRNA and protein levels. The receptor was expressed on the cell surface of basophils, in the intact and cleaved forms. Basophils did not express uPA at either the protein or mRNA level. uPA (10(-12)-10(-9) M) and its uPAR-binding N-terminal fragment (ATF) were potent chemoattractants for basophils, but did not induce histamine or cytokine release. Inactivation of uPA enzymatic activity by di-isopropyl fluorophosphate did not affect its chemotactic activity. A polyclonal Ab against uPAR inhibited uPA-dependent basophil chemotaxis. The uPAR-derived peptide 84-95 (uPAR84-95) induced basophil chemotaxis. Basophils expressed mRNA for the formyl peptide receptors formyl peptide receptor (FPR), FPR-like 1 (FPRL1), and FPRL2. The FPR antagonist cyclosporin H prevented chemotaxis induced by FMLP, but not that induced by uPA and uPAR84-95. Incubation of basophils with low and high concentrations of FMLP, which desensitize FPR and FPRL1, respectively, but not FPRL2, slightly reduced the chemotactic response to uPA and uPAR84-95. In contrast, desensitization with WKYMVm, which also binds FPRL2, markedly inhibited the response to both molecules. Thus, uPA is a potent chemoattractant for basophils that seems to act through exposure of the chemotactic uPAR epitope uPAR84-95, which is an endogenous ligand for FPRL2 and FPRL1.  相似文献   

18.
19.
The glucocorticoid-regulated protein annexin I (lipocortin I) has been shown to mediate antiinflammatory activities of glucocorticoids, but the molecular basis of its action has remained elusive. Here we show that annexin I acts through the formyl peptide receptor (FPR) on human neutrophils. Peptides derived from the unique N-terminal domain of annexin I serve as FPR ligands and trigger different signaling pathways in a dose-dependent manner. Lower peptide concentrations possibly found in inflammatory situations elicit Ca2+ transients without fully activating the MAP kinase pathway. This causes a specific inhibition of the transendothelial migration of neutrophils and a desensitization of neutrophils toward a chemoattractant challenge. These findings identify annexin I peptides as novel, endogenous FPR ligands and establish a mechanistic basis of annexin I-mediated antiinflammatory effects.  相似文献   

20.
A cDNA of 1650 base pairs was isolated by screening an HL-60 granulocyte library with an N-formyl peptide receptor (NFPR) cDNA probe under low stringency conditions. The cDNA encodes a protein of 351 amino acids tentatively named FPR2, with a calculated molecular weight of 39 kDa. Sequence analysis revealed that FPR2 is 69% identical in sequence to the human NFPR and shares extensive homology to several other chemoattractant receptors. FPR2 expressed in transfected cells mediated formyl peptide-stimulated calcium mobilization at micromolar concentrations of ligand. FPR2 messenger is detected in granulocytic HL-60 cells, but not in undifferentiated HL-60 cells. These findings suggest that FPR2 is a novel receptor for formyl peptide ligand and a new member of the chemoattractant receptor gene family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号