首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) latent infection depends on the viral episomes in the nucleus being distributed to daughter cells following cell division. The latency-associated nuclear antigen (LANA) is constitutively expressed in all KSHV-infected cells. LANA binds sequences in the terminal repeat regions of the KSHV genome and tethers the viral episomes to chromosomes. To better understand the mechanism of chromosomal tethering, we performed glutathione S-transferase (GST) affinity and yeast two-hybrid assays to identify LANA-interacting proteins with known chromosomal association. Two of the interactors were the methyl CpG binding protein MeCP2 and the 43-kDa protein DEK. The interactions of MeCP2 and DEK with LANA were confirmed by coimmunoprecipitation. The MeCP2-interacting domain was mapped to the previously described chromatin binding site in the N terminus of LANA, while the DEK-interacting domain mapped to LANA amino acids 986 to 1043 in the C terminus. LANA was unable to associate with mouse chromosomes in chromosome spreads of transfected NIH 3T3 cells. However, LANA was capable of targeting to mouse chromosomes in the presence of human MeCP2 or DEK. The data indicate that LANA is tethered to chromosomes through two independent chromatin binding domains that interact with different protein partners.  相似文献   

2.
3.
4.
5.
6.
The SRY (sex-determining region on the Y chromosome) is essential for male development; however, the molecular mechanism by which the SRY induces testis development is still unclear. To elucidate the mechanism of testis development, we identified SRY-interacting proteins using a yeast two-hybrid system. We found two ribosomal proteins, RPS7 (ribosomal protein S7) and RPL13a (ribosomal protein L13a) that interact with the HMG (high-mobility group) box domain of SRY. Furthermore, we confirmed the intracellular distributions of RPS7, RPL13a and SRY and found that the three proteins were co-expressed in COS1 cells. SRY, RPS7 and RPL13a were co-localized in nuclear speckles. These findings suggest that SRY plays an important role in activities associated with nuclear speckles via an unknown mechanism.  相似文献   

7.
8.
Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) is the likely infectious cause of Kaposi's sarcoma, primary effusion lymphoma, and some cases of multicentric Castleman's disease. Its latent nuclear antigen (LANA) is expressed in the nuclei of latently infected cells and may play a role in the persistence of episomal viral DNA in dividing cells. Here we report that LANA interacts with RING3, a nuclear protein and member of the Drosophila fsh (female sterile homeotic) family of proteins, some of which have previously been implicated in controlling gene expression. Binding of RING3 to LANA involves the ET domain, characteristic of fsh-related proteins, suggesting that this highly conserved region is involved in protein-protein interactions. The interaction between RING3 and LANA results in phosphorylation of serine and threonine residues located between amino acids 951 and 1107 in the carboxy-terminal region of LANA. However, RING3 is not itself a kinase but appears to recruit an as yet unidentified serine/threonine protein kinase into the complex which it forms with LANA.  相似文献   

9.
RPS3, a conserved, eukaryotic ribosomal protein of the 40 S subunit, is required for ribosome biogenesis. Because ribosomal proteins are abundant and ubiquitous, they may have additional extraribosomal functions. Here, we show that human RPS3 is a physiological target of Akt kinase and a novel mediator of neuronal apoptosis. NGF stimulation resulted in phosphorylation of threonine 70 of RPS3 by Akt, and this phosphorylation was required for Akt binding to RPS3. RPS3 induced neuronal apoptosis, up-regulating proapoptotic proteins Dp5/Hrk and Bim by binding to E2F1 and acting synergistically with it. Akt-dependent phosphorylation of RPS3 inhibited its proapoptotic function and perturbed its interaction with E2F1. These events coincided with nuclear translocation and accumulation of RPS3, where it functions as an endonuclease. Nuclear accumulation of RPS3 results in an increase in DNA repair activity to some extent, thereby sustaining neuronal survival. Abolishment of Akt-mediated RPS3 phosphorylation through mutagenesis accelerated apoptotic cell death and severely compromised nuclear translocation of RPS3. Thus, our findings define an extraribosomal role of RPS3 as a molecular switch that accommodates apoptotic induction to DNA repair through Akt-mediated phosphorylation.  相似文献   

10.
In response to inflammatory stimuli (e.g., endotoxin, proinflammatory cytokines) or oxidative stress, macrophages actively release a ubiquitous nuclear protein, high-mobility group box 1 (HMGB1), to sustain an inflammatory response to infection or injury. In this study, we demonstrated mild heat shock (e.g., 42.5 degrees C, 1 h), or enhanced expression of heat shock protein (Hsp) 72 (by gene transfection) similarly rendered macrophages resistant to oxidative stress-induced HMGB1 cytoplasmic translocation and release. In response to oxidative stress, cytoplasmic Hsp72 translocated to the nucleus, where it interacted with nuclear proteins including HMGB1. Genetic deletion of the nuclear localization sequence (NLS) or the peptide binding domain (PBD) from Hsp72 abolished oxidative stress-induced nuclear translocation of Hsp72-DeltaNLS (but not Hsp72-DeltaPBD), and prevented oxidative stress-induced Hsp72-DeltaPBD-HMGB1 interaction in the nucleus. Furthermore, impairment of Hsp72-DeltaNLS nuclear translocation, or Hsp72-DeltaPBD-HMGB1 interaction in the nucleus, abrogated Hsp72-mediated suppression of HMGB1 cytoplasmic translocation and release. Taken together, these experimental data support a novel role for nuclear Hsp72 as a negative regulator of oxidative stress-induced HMGB1 cytoplasmic translocation and release.  相似文献   

11.
Heat shock protein 70 (Hsp70) is an evolutionarily well-conserved molecular chaperone involved in several cellular processes such as folding of proteins, modulating protein-protein interactions, and transport of proteins across the membrane. Binding partners of Hsp70 (known as “clients”) are identified on an individual basis as researchers discover their particular protein of interest binds to Hsp70. A full complement of Hsp70 interactors under multiple stress conditions remains to be determined. A promising approach to characterizing the Hsp70 “interactome” is the use of protein epitope tagging and then affinity purification followed by mass spectrometry (AP-MS/MS). AP-MS analysis is a widely used method to decipher protein-protein interaction networks and identifying protein functions. Conventionally, the proteins are overexpressed ectopically which interferes with protein complex stoichiometry, skewing AP-MS/MS data. In an attempt to solve this issue, we used CRISPR/Cas9-mediated gene editing to integrate a tandem-affinity (TAP) epitope tag into the genomic locus of HSC70. This system offers several benefits over existing expression systems including native expression, no requirement for selection, and homogeneity between cells. This cell line, freely available to chaperone researchers, will aid in small and large-scale protein interaction studies as well as the study of biochemical activities and structure-function relationships of the Hsc70 protein.  相似文献   

12.
Herpesvirus saimiri (HVS) is the prototype gamma-2 herpesvirus, which naturally infects the squirrel monkey Saimiri sciureus, causing an asymptomatic but persistent infection. The latent phase of gamma-2 herpesviruses is characterized by their ability to persist in a dividing cell population while expressing a limited subset of latency-associated genes. In HVS only three genes, open reading frame 71 (ORF71), ORF72, and ORF73, are expressed from a polycistronic mRNA. ORF73 has been shown to be the only gene essential for HVS episomal maintenance and can therefore be functionally compared to the human gammaherpesvirus latency-associated proteins, EBNA-1 and Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA). HVS ORF73 is the positional homologue of KSHV LANA and, although it shares limited sequence homology, has significant structural and functional similarities. Investigation of KSHV LANA has demonstrated that it is able to mediate KSHV episomal persistence by tethering the KSHV episome to host mitotic chromosomes via interactions with cellular chromosome-associated proteins. These include associations with core and linker histones, several bromodomain proteins, and the chromosome-associated proteins methyl CpG binding protein 2 (MeCP2) and DEK. Here we show that HVS ORF73 associates with MeCP2 via a 72-amino-acid domain within the ORF73 C terminus. Furthermore, we have assessed the functional significance of this interaction, using a variety of techniques including small hairpin RNA knockdown, and show that association between ORF73 and MeCP2 is essential for HVS chromosomal attachment and episomal persistence.  相似文献   

13.
Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site.  相似文献   

14.
Our knowledge of the functions of metazoan ribosomal proteins in ribosome synthesis remains fragmentary. Using siRNAs, we show that knockdown of 31 of the 32 ribosomal proteins of the human 40S subunit (ribosomal protein of the small subunit [RPS]) strongly affects pre–ribosomal RNA (rRNA) processing, which often correlates with nucleolar chromatin disorganization. 16 RPSs are strictly required for initiating processing of the sequences flanking the 18S rRNA in the pre-rRNA except at the metazoan-specific early cleavage site. The remaining 16 proteins are necessary for progression of the nuclear and cytoplasmic maturation steps and for nuclear export. Distribution of these two subsets of RPSs in the 40S subunit structure argues for a tight dependence of pre-rRNA processing initiation on the folding of both the body and the head of the forming subunit. Interestingly, the functional dichotomy of RPS proteins reported in this study is correlated with the mutation frequency of RPS genes in Diamond-Blackfan anemia.  相似文献   

15.
16.
The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by +/-2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection.  相似文献   

17.
The lectin from Helix pomatia (HPA) binds to adenocarcinomas with a metastatic phenotype but the glycoconjugates of cancer cells that bind to the lectin have yet to be characterized in detail. We used a model of metastatic (HT29) and nonmetastatic (SW480) human colorectal cancer cells and a proteomic approach to identify HPA binding glycoproteins. Cell membrane proteins purified by HPA affinity chromatography, were separated by 2-DE and analyzed by MS. Competitive inhibition experiments with N-acetylgalactosamine, N-acetylglucosamine, and sialic acid confirmed that HPA binding was via a glycan-mediated interaction. Western blot analysis showed that HPA binds to proteins not recognized by an antibody against blood group A epitope. The proteomic study showed the main HPA binding partners include integrin alphav/alpha6 and annexin A2/A4. These proteins were found complexed with microfilament proteins alpha and beta tubulin, actin, and cytokeratins 8 and 18. HPA also bound to Hsp70, Hsp90, TRAP-1, and tumor rejection factor 1. This study revealed that the prognostic utility of HPA lies in its ability to bind simultaneously to many glycoproteins involved in cell migration and signaling, in addition, the proteins recognized by HPA are glycosylated with structures distinct from the blood group A epitope.  相似文献   

18.
Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC50 in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs.  相似文献   

19.
The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy.  相似文献   

20.
Hantavirus nucleocapsid protein (NP) inhibits protein kinase R (PKR) dimerization by an unknown mechanism to counteract its antiviral responses during virus infection. Here we demonstrate that NP exploits an endogenous PKR inhibitor P58IPK to inhibit PKR. The activity of P58IPK is normally restricted in cells by the formation of an inactive complex with its negative regulator Hsp40. On the other hand, PKR remains associated with the 40S ribosomal subunit, a unique strategic location that facilitates its free access to the downstream target eIF2α. Although both NP and Hsp40 bind to P58IPK, the binding affinity of NP is much stronger compared to Hsp40. P58IPK harbors an NP binding site, spanning to N-terminal TPR subdomains I and II. The Hsp40 binding site on P58IPK was mapped to the TPR subdomain II. The high affinity binding of NP to P58IPK and the overlap between NP and Hsp40 binding sites releases the P58IPK from its negative regulator by competitive inhibition. The NP-P58IPK complex is selectively recruited to the 40S ribosomal subunit by direct interaction between NP and the ribosomal protein S19 (RPS19), a structural component of the 40S ribosomal subunit. NP has distinct binding sites for P58IPK and RPS19, enabling it to serve as bridge between P58IPK and the 40S ribosomal subunit. NP mutants deficient in binding to either P58IPK or RPS19 fail to inhibit PKR, demonstrating that selective engagement of P58IPK to the 40S ribosomal subunit is required for PKR inhibition. Cells deficient in P58IPK mount a rapid PKR antiviral response and establish an antiviral state, observed by global translational shutdown and rapid decline in viral load. These studies reveal a novel viral strategy in which NP releases P58IPK from its negative regulator and selectively engages it on the 40S ribosomal subunit to promptly combat the PKR antiviral responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号