首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EMILIN-3 is a glycoprotein of the extracellular matrix belonging to a family that contains a characteristic N-terminal cysteine-rich EMI domain. Currently, EMILIN-3 is the least characterized member of the elastin microfibril interface-located protein (EMILIN)/Multimerin family. Using RNA, immunohistochemical, and protein chemistry approaches, we carried out a detailed characterization of the expression and biochemical properties of EMILIN-3 in mouse. During embryonic and postnatal development, EMILIN-3 showed a peculiar and dynamic pattern of gene expression and protein distribution. EMILIN-3 mRNA was first detected at E8.5-E9.5 in the tail bud and in the primitive gut, and at later stages it became abundant in the developing gonads and osteogenic mesenchyme. Interestingly and in contrast to other EMILIN/Multimerin genes, EMILIN-3 was not found in the cardiovascular system. Despite the absence of the globular C1q domain, immunoprecipitation and Western blot analyses demonstrated that EMILIN-3 forms disulfide-bonded homotrimers and higher order oligomers. Circular dichroism spectroscopy indicated that the most C-terminal part of EMILIN-3 has a substantial α-helical content and forms coiled coil structures involved in EMILIN-3 homo-oligomerization. Transfection experiments with recombinant constructs showed that the EMI domain contributes to the higher order self-assembly but was dispensable for homotrimer formation. EMILIN-3 was found to bind heparin with high affinity, a property mediated by the EMI domain, thus revealing a new function for this domain that may contribute to the interaction of EMILIN-3 with other extracellular matrix and/or cell surface molecules. Finally, in vitro experiments showed that EMILIN-3 is able to function as an extracellular regulator of the activity of TGF-β ligands.  相似文献   

2.
Kidney development has often served as a model for epithelial-mesenchymal cell interaction where the branching epithelium of the ureteric bud induces the metanephrogenic mesenchyme to form epithelial nephrons. In a screen for genes differentially expressed during kidney development, we have identified a novel gene that is dynamically expressed in the branching ureter and the developing nephrons. It was designated Emu1 since it shares an N-terminal cysteine-rich domain with Emilin1/2 and Multimerin. This highly conserved EMI domain is also found in another novel protein (Emu2) of similar protein structure: an N-terminal signal peptide followed by the EMI domain, an interrupted collagen stretch, and a conserved C-terminal domain of unknown function. We identified two further secreted EMI domain proteins, prompting us to compare their gene and protein structures, the EMI domain phylogeny, as well as the embryonic expression pattern of known (Emilin1/2, Multimerin) and novel (Emu1/2, Emilin3, Multimerin2) Emu gene family members. Emu1 and Emu2 not only show a similar structural organization, but furthermore a striking complementary expression in organs developing through epithelial-mesenchymal interactions. In these tissues, Emu1 is restricted to epithelial and Emu2 to mesenchymal cells. Preliminary biochemical analysis of Emu1/2 confirmed that they are secreted glycoproteins which are attached to the extracellular matrix and capable of forming homo- and heteromers via disulfide bonding. The widespread, but individually distinct expression patterns of all Emu gene family members suggest multiple functions during mouse embryogenesis. Their multidomain protein structure may indicate that Emu proteins interact with several different extracellular matrix components and serve to connect and integrate the function of multiple partner molecules.  相似文献   

3.
4.
EMILIN (elastin microfibril interfase located Protein) is an elastic fiber-associated glycoprotein consisting of a self-interacting globular C1q domain at the C terminus, a short collagenous stalk, an extended region of potential coiled-coil structure, and an N-terminal cysteine-rich domain (EMI domain). Using the globular C1q domain as a bait in the yeast two-hybrid system, we have isolated a cDNA encoding a novel protein. Determination of the entire primary structure demonstrated that this EMILIN-binding polypeptide is highly homologous to EMILIN. The domain organization is superimposable, one important difference being a proline-rich (41%) segment of 56 residues between the potential coiled-coil region and the collagenous domain absent in EMILIN. The entire gene (localized on chromosome 18p11.3) was isolated from a BAC clone, and it is structurally almost identical to that of EMILIN (8 exons, 7 introns with identical phases at the exon/intron boundaries) but much larger (about 40 versus 8 kilobases) than that of EMILIN. Given these findings we propose to name the novel protein EMILIN-2 and the prototype member of this family EMILIN-1 (formerly EMILIN). The mRNA expression of EMILIN-2 is more restricted compared with that of EMILIN-1; highest levels are present in fetal heart and adult lung, whereas, differently from EMILIN-1, adult aorta, small intestine, and appendix show very low expression, and adult uterus and fetal kidney are negative. Finally, the EMILIN-2 protein is secreted extracellularly by in vitro-grown cells, and in accordance with the partial coexpression in fetal and adult tissues, the two proteins shown extensive but not absolute immunocolocalization in vitro.  相似文献   

5.
Porokeratosis is a rare disease of epidermal keratinization characterized by the histopathological feature of the cornoid lamella, a column of tightly fitted parakeratocytic cells, whose etiology is still unclear. Porokeratosis of Mibelli is a subtype of porokeratosis presenting a single plaque or a small number of plaques of variable size located unilaterally on limbs. It frequently appears in childhood and occurs with a higher incidence in males. Cytogenetic analyses were performed in all members of the family on lesioned and uninvolved skin. An array-CGH analysis was also performed utilizing the Human Genome CGH Microarray Kit G3 400 with 5.3 KB overall median probe spacing. Gene expression was performed on skin fibroblasts. In this study, we describe a Caucasian healthy 4-year-old child and his father showing features of porokeratosis of Mibelli. Array-CGH analysis revealed an interstitial 429.5 Kb duplication of chromosome 18p11.32-p11.3 containing four genes, namely: SMCHD1, EMILIN2, LPIN2, and MYOM1 both in patient and his father. EMILIN2 resulted overexpressed on skin fibroblasts. Also other members of this family, without evident signs of porokeratosis, carried the same duplication. Among these genes, we focused our attention on elastin microfibril interfacer 2 (EMILIN2) gene. Apoptosis plays a fundamental role in maintaining epidermal homeostasis, balancing keratinocytes proliferation, and forming the stratum corneum. EMILIN2 is known to trigger the apoptosis of different cell lines negatively affecting cell survival. It is expressed in the skin. We could speculate that the duplication and overexpression of EMILIN2 cause an abnormal apoptosis of epidermal keratinocytes and alter the process of keratinization, even if other epigenetic and genetic factors could also be involved. Our results could contribute to a better understanding of the pathogenesis of porokeratosis of Mibelli.  相似文献   

6.
During Xenopus early development, gene expression is regulated mainly at the translational level by the length of the poly(A) tail of mRNAs. The Eg family and c-mos maternal mRNAs are deadenylated rapidly and translationally repressed after fertilization. Here, we characterize a short sequence element (EDEN) responsible for the rapid deadenylation of Eg5 mRNA. Determining the core EDEN sequence permitted us to localize the c-mos EDEN sequence. The c-mos EDEN confered a rapid deadenylation to a reporter gene. The EDEN-specific RNA-binding protein (EDEN-BP) was purified and a cDNA obtained. EDEN-BP is highly homologous to a human protein possibly involved in myotonic dystrophy. Immunodepleting EDEN-BP from an egg extract totally abolished the EDEN-mediated deadenylation activity, but did not affect the default deadenylation activity. Therefore, EDEN-BP constitutes the first trans-acting factor for which an essential role in the specificity of mRNA deadenylation has been directly demonstrated.  相似文献   

7.
8.
9.
10.
11.
12.
Elastin microfibril interface-located proteins (EMILINs) constitute a family of extracellular matrix (ECM) glycoproteins characterized by the presence of an EMI domain at the N terminus and a gC1q domain at the C terminus. EMILIN1, the archetype molecule of the family, is involved in elastogenesis and hypertension etiology, whereas the function of EMILIN2 has not been resolved. Here, we provide evidence that the expression of EMILIN2 triggers the apoptosis of different cell lines. Cell death depends on the activation of the extrinsic apoptotic pathway following EMILIN2 binding to the TRAIL receptors DR4 and, to a lesser extent, DR5. Binding is followed by receptor clustering, colocalization with lipid rafts, death-inducing signaling complex assembly, and caspase activation. The direct activation of death receptors by an ECM molecule that mimics the activity of the known death receptor ligands is novel. The knockdown of EMILIN2 increases transformed cell survival, and overexpression impairs clonogenicity in soft agar and three-dimensional growth in natural matrices due to massive apoptosis. These data demonstrate an unexpected direct and functional interaction of an ECM constituent with death receptors and discloses an additional mechanism by which ECM cues can negatively affect cell survival.  相似文献   

13.

Background

Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP) comprises four distinct families: expansin A (EXPA), expansin B (EXPB), expansin-like A (EXLA) and expansin-like B (EXLB). There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera) genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far.

Methodology/Principal Findings

We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon–intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa), compared to those from Arabidopsis thaliana and rice (Oryza sativa). We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering.

Conclusion

Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the functional characterization of grapevine gene families by combining phylogenetic analysis with global gene expression profiling.  相似文献   

14.
Cho S  Beintema JJ  Zhang J 《Genomics》2005,85(2):208-220
The RNase A superfamily has been important in biochemical, structural, and evolutionary studies and is believed to be the sole vertebrate-specific enzyme family. To understand the origin and diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of human, mouse, rat, and chicken. We report a previously unnoticed gene cluster in mouse chromosome 10 and a number of new genes, including mammalian RNases 11-13, which are close relatives of the recently identified RNases 9 and 10. Gene expression data imply male-reproductive functions for RNases 9-13, although their sequences suggest the lack of ribonucleolytic activities. In contrast to the presence of 13-20 functional genes in mammals, chicken has only 3 RNase genes, which are evolutionarily close to mammalian RNase 5, like other nonmammalian RNases. This and other evidence suggests that the RNase A superfamily originated from an RNase 5-like gene and expanded in mammals. Together with the fact that multiple lineages of the superfamily, including RNases 2, 3, 5, and 7, have antipathogenic activities, we suggest that the superfamily started off as a host-defense mechanism in vertebrates. Consistent with this hypothesis, all members of the superfamily exhibit high rates of amino acid substitution as is commonly observed in immunity genes.  相似文献   

15.
Thrombosis, like other cardiovascular diseases, has a strong genetic component, with largely unknown determinants. EMILIN2, Elastin Microfibril Interface Located Protein2, was identified as a candidate gene for thrombosis in mouse and human quantitative trait loci studies. EMILIN2 is expressed during cardiovascular development, on cardiac stem cells, and in heart tissue in animal models of heart disease. In humans, the EMILIN2 gene is located on the short arm of Chromosome 18, and patients with partial and complete deletion of this chromosome region have cardiac malformations. To understand the basis for the thrombotic risk associated with EMILIN2, EMILIN2 deficient mice were generated. The findings of this study indicate that EMILIN2 influences platelet aggregation induced by adenosine diphosphate, collagen, and thrombin with both EMILIN2-deficient platelets and EMILIN2-deficient plasma contributing to the impaired aggregation response. Purified EMILIN2 added to platelets accelerated platelet aggregation and reduced clotting time when added to EMILIN2-deficient mouse and human plasma. Carotid occlusion time was 2-fold longer in mice with platelet-specific EMILIN2 deficiency, but stability of the clot was reduced in mice with both global EMILIN2 deficiency and with platelet-specific EMILIN2 deficiency. In vitro clot retraction was markedly decreased in EMILIN2 deficient mice, indicating that platelet outside-in signaling was dependent on EMILIN2. EMILIN1 deficient mice and EMILIN2:EMILIN1 double deficient mice had suppressed platelet aggregation and delayed clot retraction similar to EMILIN2 mice, but EMILIN2 and EMILIN1 had opposing affects on clot retraction, suggesting that EMILIN1 may attenuate the effects of EMILIN2 on platelet aggregation and thrombosis. In conclusion, these studies identify multiple influences of EMILIN2 in pathophysiology and suggest that its role as a prothrombotic risk factor may arise from its effects on platelet aggregation and platelet mediated clot retraction.  相似文献   

16.
17.
EMILIN1 and EMILIN2 belong to a family of extracellular matrix glycoproteins characterized by the N-terminal cysteine-rich EMI domain, a long segment with high probabilty for coiled-coil structure formation and a C-terminal gC1q domain. To study EMILIN1 and EMILIN2 interaction and assembly we have applied qualitative and quantitative two hybrid systems using constructs corresponding to the gC1q and EMI domains. The identified interactions were further confirmed in yeast extracts of co-transfected cells followed by co-immunoprecipitation. The data indicated that gC1q domains are able to self-interact as well as to interact one each other and with the EMI domains, but no self interactions were detected between the EMI domains. Furthermore EMILINs interactions were studied in 293-EBNA cells co-transfected with full lenght EMILIN1 and EMILIN2 constructs. Specific antibodies were able to co-immunoprecipitate EMILINs, indicating that also full-lenght proteins can give rise to non-covalent homo- and hetero-multimers even if reduced and alkylated before mixing. Immunofluorescence analysis on mouse cell cultures and tissues sections with specific antibodies showed co-distribution of EMILIN1 and EMILIN2. Thus, we can hypothesize that EMILINs multimers are formed by head-to-tail interaction between C-terminal and N-terminal domains of EMILIN1 and/or EMILIN2 but also by tail-to-tail interaction between gC1q domains. These multiple interactions may regulate homo-typic and/or hetero-typic linear and eventually lateral branching assemblies of EMILIN1 and EMILIN2 in tissues.  相似文献   

18.
19.
The EMILINs are a new family of glycoproteins of the extracellular matrix. The prototype of this family is the chicken EMILIN that was originally identified in extracts of aortas; it was then found to be widely distributed in several tissues associated with elastin and localized at the interface between amorphous elastin and microfibrils. Based on peptide sequences, chicken and human cDNAs coding for EMILIN were isolated by RT/PCR by screening kidney and heart cDNA libraries. By using a C-terminal fragment of human EMILIN-1 as a bait in the yeast two-hybrid system, a second family member, EMILIN-2, has also been isolated. EMILINs are characterized by a C-terminal gC1q globular domain, a short collagenous sequence, a long coiled-coil region and a new cysteine-rich N-terminal domain that can be considered a hallmark of the family being present also in multimerin. The gene for EMILIN-1 was mapped on chromosome 2p23 overlapping with the promoter region of the ketohexokinase gene. The gC1q domain of EMILIN-1 can form relatively stable and compact homotrimers and this association is then followed by a multimeric assembly of disulfide-bonded protomers. Recombinant EMILIN-1 purified from the supernatant of 293 cells represents a very efficient ligand for cell adhesion of several cell types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号