首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) exhibits enhanced stability compared to the somatic isoenzyme (GAPD). A comparative analysis of the structures of these isoenzymes revealed characteristic features, which could be important for the stability of GAPDS: six specific proline residues and three buried salt bridges. To evaluate the impact of these structural elements into the stability of this isoenzyme, we obtained two series of mutant GAPDS: 1) six mutants each containing a substitution of one of the specific prolines by alanine, and 2) three mutants each containing a mutation breaking one of the salt bridges. Stability of the mutants was evaluated by differential scanning calorimetry and by their resistance towards guanidine hydrochloride (GdnHCl). The most effect on thermostability was observed for the mutants P326A and P164A: the Tm values of the heat-absorption curves decreased by 6.0 and 3.3 °C compared to the wild type protein, respectively. The resistance towards GdnHCl was affected most by the mutation D311N breaking the salt bridge between the catalytic and NAD+-binding domains: the inactivation rate constant in the presence of GdnHCl increased six-fold, and the value of GdnHCl concentration corresponding to the protein half-denaturation decreased from 1.83 to 1.35 M. Besides, the mutation D311N enhanced the enzymatic activity of the protein two-fold. The results suggest that the residues P164 (β-turn), P326 (first position of α-helix), and the interdomain salt bridge D311–H124 are significant for the enhanced stability of GAPDS. The salt bridge D311–H124 enhances stability of the active site of GAPDS at the expense of the catalytic activity.  相似文献   

2.
The thermostability of protein thermostable cathechol 2,3-dixoygenase (TC23O) has been studied by the parallel molecular dynamics simulations. By analysis of the exponent beta, which is related to the scattering spectrum and constant-pressure heat capacity Cp, we reveal the respective contribution of a specific residue 228 proline; a specific salt bridge, Lys188N-Glu291OE1; four ions; and a different water environment to the thermostability of TC23O. The dynamic transition temperature of the mutants, Pro228Ser and Glu291Gly of the TC23O, was decreased about 10 degrees C and 19 degrees C respectively. The displacement of the four ions had no significant effect on the thermostability of TC23O. Water affects the thermostability by influencing the changes of accessible conformation to a certain extent. All these results agree with the known experimental results.  相似文献   

3.
Lee CF  Makhatadze GI  Wong KB 《Biochemistry》2005,44(51):16817-16825
The ability to rationally engineer a protein with altered stability depends upon the detailed understanding of the role of noncovalent interactions in defining thermodynamic properties of proteins. In this paper, we used T. celer L30e as a model to address the question of the role of charge-charge interactions in defining the stability of this protein. A total of 26 single-site charge-to-alanine variants of this protein were generated, and the stability of these proteins was determined using thermal- and denaturant-induced unfolding. It was found that, although L30e is isolated from a thermophilic organism and is highly thermostable, some of the substitutions lead to a further increase in the transition temperature. Analysis of the effects of high ionic strength on the stabilities of L30e variants shows that the long-range charge-charge interactions are as important as the short-range (salt bridge) interactions. The changes in stabilities of the T. celer L30e protein variants were compared with the changes in the energy of charge-charge interactions calculated using different computational models. It was found that there is a good qualitative agreement between experimental and calculated data: for 70-80% (19-21 of 26, confidence p < 0.003) of the variants, computational models predict correctly the sign of the stability changes. In particular, computational models identify correctly those charged amino acid residue substitutions of which led to enhancement in thermostability. Thus, optimization of the charge-charge interactions might be a useful approach for the rational increase in protein stability.  相似文献   

4.
A 10 residue beta-hairpin, which is characteristic of thermostable Bacillus neutral proteases, was engineered into the thermolabile neutral protease of Bacillus subtilis. The recipient enzyme remained fully active after introduction of the loop. However, the mutant protein exhibited autocatalytic nicking and a 0.4 degree C decrease in thermostability. Two additional point mutations designed to improve the interactions between the enzyme surface and the introduced beta-hairpin resulted in reduced nicking and increased thermostability. After the introduction of both additional mutations in the loop-containing mutant, nicking was largely prevented and an increase in thermostability of 1.1 degrees C was achieved.  相似文献   

5.
非解朊栖热菌HG102耐热β-糖苷酶的结构与功能研究   总被引:3,自引:1,他引:3  
非解朊栖热菌HG10 2耐热 β-糖苷酶为 (β/α)8桶状结构 ,是具有水解功能和转糖苷功能的单体酶。该酶可以作为一个很好的模型来研究糖苷酶的反应机制、底物特异性和耐热的分子基础。根据对该酶的晶体结构解析和同家族酶的结构比较 ,推测Glu164和Glu338分别是质子供体和亲核基团两个活性位点 ;在α-螺旋N端第一位的脯氨酸和蛋白质外周的精氨酸是耐热机制的关键位点和关键氨基酸残基。为确定这些氨基酸残基的功能 ,通过基因定点突变的方法分别把Glu164、Glu338、Pro316、Pro356、Pro344和Arg325置换成Gln、Ala、Gly、Ala、Phe和Leu ,同时还对Pro316和Pro356进行了双置换。突变酶经过纯化得到电泳纯 ,用CD光谱进行了野生酶和突变酶的结构比较。通过突变酶的酶功能和酶学性质分析 ,结果表明Glu164和Glu338分别是质子供体和亲核基团 ,亲核基团的突变酶TnglyE338A可以合成混合型糖苷键寡糖类似物 ;在α-螺旋N端第一位的Pro316和Pro356以及在蛋白质外周形成离子键的Arg325均是对耐热性有贡献的关键氨基酸残基。  相似文献   

6.
M R Gibbs  P C Moody  A G Leslie 《Biochemistry》1990,29(51):11261-11265
The crystal structure of the Asp-199----Asn mutant of chloramphenicol acetyltransferase (CAT) has been determined to 2.35-A resolution. In wild-type CAT Asp-199 is involved in a fully buried intrasubunit salt bridge with Arg-18, an interaction that is adjacent to the active site. Replacement of aspartate with asparagine by site-directed mutagenesis disrupts this salt bridge and causes extensive conformational changes within the active site. The imidazole group of the catalytically essential His-195 is reoriented, with the loss of interactions thought to stabilize the preferred tautomer of this residue. Arg-18 and Asn-199 form three new intersubunit interactions as a result of large side-chain torsion angle changes which cause the movement of two polypeptide loops, some residues of which are up to 20 A away from the site of the mutation. The new interactions of Arg-18 and Asn-199 compensate for the loss of the buried salt bridge and afford near-wild-type thermostability to Asn-199 CAT, albeit with a greatly reduced activity.  相似文献   

7.
The structurally homologous mononuclear iron and manganese superoxide dismutases (FeSOD and MnSOD, respectively) contain a highly conserved glutamine residue in the active site which projects toward the active-site metal centre and participates in an extensive hydrogen bonding network. The position of this residue is different for each SOD isoenzyme (Q69 in FeSOD and Q146 in MnSOD of Escherichia coli). Although site-directed mutant enzymes lacking this glutamine residue (FeSOD[Q69G] and MnSOD[Q146A]) demonstrated a higher degree of selectivity for their respective metal, they showed little or no activity compared with wild types. FeSOD double mutants (FeSOD[Q69G/A141Q]), which mimic the glutamine position in MnSOD, elicited 25% the activity of wild-type FeSOD while the activity of the corresponding MnSOD double mutant (MnSOD[G77Q/Q146A]) increased to 150% (relative to wild-type MnSOD). Both double mutants showed reduced selectivity toward their metal. Differences exhibited in the thermostability of SOD activity was most obvious in the mutants that contained two glutamine residues (FeSOD[A141Q] and MnSOD[G77Q]), where the MnSOD mutant was thermostable and the FeSOD mutant was thermolabile. Significantly, the MnSOD double mutant exhibited a thermal-inactivation profile similar to that of wild-type FeSOD while that of the FeSOD double mutant was similar to wild-type MnSOD. We conclude therefore that the position of this glutamine residue contributes to metal selectivity and is responsible for some of the different physicochemical properties of these SODs, and in particular their characteristic thermostability.  相似文献   

8.
Variants of the thermolabile neutral protease (Npr) of B. subtilis (Npr-sub) and the thermostable neutral protease of B. stearothermophilus (Npr-ste) were produced by means of site-directed mutagenesis and the effects of the mutations on thermostability were determined. Mutations were designed to alter the interaction between the middle and C-terminal subdomain of these enzymes. In all Nprs a cluster of hydrophobic contacts centered around residue 315 contributes to this interaction. In thermostable Nprs (like Npr-ste) a 10 residue beta-hairpin, covering the domain interface, makes an additional contribution. The hydrophobic residue at position 315 was replaced by smaller amino acids. In addition, the beta-hairpin was deleted from Npr-ste and inserted into Npr-sub. The changes in thermostability observed after these mutations confirmed the importance of the hydrophobic cluster and of the beta-hairpin for the structural integrity of Nprs. Combined mutants showed that the effects of individual mutations affecting the interaction between the subdomains were not additive. The effects on thermostability decreased as the strength of the subdomain interaction increased. The results show that once the subdomain interface is sufficiently stabilized, additional stabilizing mutations at the same interface do not further increase thermostability. The results are interpreted on the basis of a model for the thermal inactivation of neutral proteases, in which it is assumed that inactivation results from the occurrence of local unfolding processes that render these enzymes susceptible to autolysis.  相似文献   

9.
Hyperthermophilic organisms optimally grow close to the boiling point of water. As a consequence, their macromolecules must be much more thermostable than those from mesophilic species. Here, proteins from hyperthermophiles and mesophiles are compared with respect to their thermodynamic and kinetic stabilities. The known differences in amino acid sequences and three-dimensional structures between intrinsically thermostable and thermolabile proteins will be summarized, and the crucial role of electrostatic interactions for protein stability at high temperatures will be highlighted. Successful attempts to increase the thermostability of proteins, which were either based on rational design or on directed evolution, are presented. The relationship between high thermo-stability of enzymes from hyperthermophiles and their low catalytic activity at room temperature is discussed. Not all proteins from hyperthermophiles are thermostable enough to retain their structures and functions at the high physiological temperatures. It will be shown how this shortcoming can be surpassed by extrinsic factors such as large molecular chaperones and small compatible solutes. Finally, the potential of thermostable enzymes for biotechnology is discussed.  相似文献   

10.
The Pyrococcus abyssi aspartate transcarbamylase (ATCase) shows a high degree of structural conservation with respect to the well-studied mesophilic Escherichia coli ATCase, including the association of catalytic and regulatory subunits. The adaptation of its catalytic function to high temperature was investigated, using enzyme purified from recombinant E.coli cells. At 90 degrees C, the activity of the trimeric catalytic subunit was shown to be intrinsically thermostable. Significant extrinsic stabilization by phosphate, a product of the reaction, was observed when the temperature was raised to 98 degrees C. Comparison with the holoenzyme showed that association with regulatory subunits further increases thermostability. To provide further insight into the mechanisms of its adaptation to high temperature, the crystal structure of the catalytic subunit liganded with the analogue N-phosphonacetyl-L-aspartate (PALA) was solved to 1.8A resolution and compared to that of the PALA-liganded catalytic subunit from E.coli. Interactions with PALA are strictly conserved. This, together with the similar activation energies calculated for the two proteins, suggests that the reaction mechanism of the P.abyssi catalytic subunit is similar to that of the E.coli subunit. Several structural elements potentially contributing to thermostability were identified: (i) a marked decrease in the number of thermolabile residues; (ii) an increased number of charged residues and a concomitant increase of salt links at the interface between the monomers, as well as the formation of an ion-pair network at the protein surface; (iii) the shortening of three loops and the shortening of the N and C termini. Other known thermostabilizing devices such as increased packing density or reduction of cavity volumes do not appear to contribute to the high thermostability of the P.abyssi enzyme.  相似文献   

11.
Two aspartate aminotransferase (EC 2.6.1.1) isoenzymes (AAT-1 and AAT-2) from Lupinus albus L. cv Estoril were separated, purified, and characterized. The molecular weight, pI value, optimum pH, optimum temperature, and thermodynamic parameters for thermal inactivation of both isoenzymes were obtained. Studies of the kinetic mechanism, and the kinetics of product inhibition and high substrate concentration inhibition, were performed. The effect of some divalent ions and irreversible inhibitors on both AAT isoenzymes was also studied. Native PAGE showed a higher molecular weight for AAT-2 compared with AAT-1. AAT-1 appears to be more anionic than AAT- 2, which was suggested by the anion exchange chromatography. SDS-PAGE showed a similar sub-unit molecular weight for both isoenzymes. The optimum pH (between 8.0 and 9.0) and temperature (60-65 degrees C) were similar for both isoenzymes. In the temperature range of 45-65 degrees C, AAT-2 has higher thermostability than AAT-1. Both isoenzymes showed a high affinity for keto-acid substrates, as well as a higher affinity to aspartate than glutamate. Manganese ions induced an increase in both AAT isoenzymes activities, but no cooperative effect was detected. Among the inhibitors tested, hydroxylamine affected both isoenzymes activity by an irreversible inhibition mechanism.  相似文献   

12.
The tyrosinase isoenzymes of six agaric species of Basidiomycetes were separated immunochemically by the agar double-diffusion technique and identified using dopa as substrate. The number of isoenzymes identified varied from ten in Agaricus hortensis to one in Flamula alnicola. The isoenzymes in the other species were identical serologically to corresponding isoenzyme components in the A. hortensis complex, The technique provides a relatively simple means for the analytical comparison of tyrosinase isoenzymes from different organisms.  相似文献   

13.
D N Doan  G B Fincher 《FEBS letters》1992,309(3):265-271
Barley (1----3,1----4)-beta-glucan 4-glucanohydrolase (EC 3.2.1.73) isoenzyme EII carries 4% by weight carbohydrate and is more stable at elevated temperatures than isoenzyme EI, which has no associated carbohydrate. The relationship between carbohydrate content and thermostability has been investigated by treatment of the two isoenzymes with N-glycopeptidase F (EC 3.5.1.52). Removal of carbohydrate from isoenzyme EII results in a decrease in the enzyme's thermostability, but treatment of isoenzyme EI with the N-glycopeptidase F has no effect. In addition, removal of a single N-glycosylation site in isoenzyme EII (Asn190-Ala-Ser) by site-directed mutagenesis of the corresponding cDNA led to a reduction in thermostability, while the introduction of this site into isoenzyme EI enhanced stability. We conclude that N-glycosylation of Asn190 enhances the stability of isoenzyme EII at elevated temperatures, but that other factors related to their primary structures also contribute to the differences in thermostabilities of the barley (1----3,1----4)-beta-glucanases.  相似文献   

14.
We designed two mutants of superoxide dismutase (SOD), one is thermostable and the other is thermolabile, which provide valuable insight to identify amino acid residues essential for the thermostability of the SOD from Aquifex pyrophilus (ApSOD). The mutant K12A, in which Lys12 was replaced by Ala, had increased thermostability compared to that of the wild type. The T(1/2) value of K12A was 210 min and that of the wild type was 175 min at 95 degrees C. However, the thermostability of the mutant E41A, which has a T(1/2) value of 25 min at 95 degrees C, was significantly decreased compared to the wild type of ApSOD. To explain the enhanced thermostability of K12A and thermolabile E41A on the structural basis, the crystal structures of the two SOD mutants have been determined. The results have clearly shown the general significance of hydrogen bonds and ion-pair network in the thermostability of proteins.  相似文献   

15.
The distribution of aspartate aminotransferase activity in yeasts was determined. The number of species of the enzyme in each yeast was determined by zymogram analysis. All the yeasts, except for the genus Saccharomyces, showed two or three activity bands on a zymogram. From among the strains, Rhodotorula minuta [corrected] and Torulopsis candida were selected for examination of the existence of yeast mitochondrial isoenzymes, because these strains showed two clear activity bands on the zymogram and contained a high amount of the enzyme. Only one aspartate aminotransferase was purified from T. candida: the component in the minor band on the zymogram was not an isoenzyme of aspartate aminotransferase. On the other hand, two aspartate aminotransferases were purified to homogeneity from R. minuta [corrected]. The components in the main and minor activity bands on the zymogram were identified as the mitochondrial and cytosolic isoenzymes, respectively, in a cell-fractionation experiment. The enzymatic properties of these isoenzymes were determined. The yeast mitochondrial isoenzyme resembled the animal mitochondrial isoenzymes in molecular weight (subunits and native form), absorption spectrum, and substrate specificity. The amino acid composition was closely similar to that of pig mitochondrial isoenzyme. Rabbit antibody against the yeast mitochondrial isoenzyme, however, did not form a precipitin band with the pig mitochondrial isoenzyme.  相似文献   

16.
A thermostable isoenzyme (T(80)) of xylose isomerase from the eukaryote xerophyte Cereus pterogonus was purified to homogeneity by precipitation with ammonium sulfate and column chromatography on Dowex-1 ion exchange, with Sephadex G-100 gel filtration, resulting in an approximately 25.55-fold increase in specific activity and a final yield of approximately 17.9%. Certain physiochemical and kinetic properties (K(m) and V(max)) of the T(80) xylose isomerase isoenzyme were investigated. The molecular mass of the purified T(80) isoenzyme was 68 kD determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polyclonal antibodies against the purified T(80) isoenzyme recognized a single polypeptide band on Western blots. The activation energy required for the thermal denaturation of the isoenzyme was determined to be 61.84?KJ mol(-1). The use of differential scanning calorimetry established the melting temperature of the CPXI isoenzyme to be 80°C, but when studied with added metal ions, melting temperature increases to more than the normal. Fluorescence spectroscopy of T(80) isoenzymes yielded an emission peak with λ(em) at 320?nm and 340?nm, respectively, confirming the presence of Trp residue in these proteins. Electron paramagnetic resonance (EPR) analysis at liquid nitrogen temperature established the presence of Mn(2+) and Co(2+) associated with each isoenzyme. These enzyme species exhibited different thermal and pH stabilities compared to their mesophilic counterparts and offered greater efficiency in functioning as a potential alternate catalytic converter of glucose in the production of high-fructose corn syrup (HFCS) for the sweetener industry and for ethanol production.  相似文献   

17.
This paper reviews studies on thermostable proteins from thermophilic bacteria and on mutant proteins of human hemoglobin, tryptophan synthase α-subunit of E. coli, T4 phage lysozyme, and phage λ repressor with respect to the role of the consisting amino acid residues in stabilization of conformation. The stability of a protein is easily affected by single amino acid substitutions, by which the protein undergoes change(s) of one or more of the following: a hydrogen bond, a salt bridge, a hydrophobic interaction, the volume of the residue, a disulfide bond, or the relative position of two aromatic rings.  相似文献   

18.
Microbial hormone-sensitive lipases (HSLs) contain a CAP domain and a catalytic domain. However, it remains unclear how the CAP domain interacts with the catalytic domain to maintain the stability of microbial HSLs. Here, we isolated an HSL esterase, E40, from a marine sedimental metagenomic library. E40 exhibited the maximal activity at 45 °C and was quite thermolabile, with a half-life of only 2 min at 40 °C, which may be an adaptation of E40 to the permanently cold sediment environment. The structure of E40 was solved to study its thermolability. Structural analysis showed that E40 lacks the interdomain hydrophobic interactions between loop 1 of the CAP domain and α7 of the catalytic domain compared with its thermostable homologs. Mutational analysis showed that the introduction of hydrophobic residues Trp202 and Phe203 in α7 significantly improved E40 stability and that a further introduction of hydrophobic residues in loop 1 made E40 more thermostable because of the formation of interdomain hydrophobic interactions. Altogether, the results indicate that the absence of interdomain hydrophobic interactions between loop 1 and α7 leads to the thermolability of E40. In addition, a comparative analysis of the structures of E40 and other thermolabile and thermostable HSLs suggests that the interdomain hydrophobic interactions between loop 1 and α7 are a key element for the thermostability of microbial HSLs. Therefore, this study not only illustrates the structural element leading to the thermolability of E40 but also reveals a structural determinant for HSL thermostability.  相似文献   

19.
Referee: Dr. Ruth Nussinov, Saic Frederick, Bldg. 469. 469, Room 151, Frederick, MD 21702-1201

Hyperthermophilic organisms optimally grow close to the boiling point of water. As a consequence, their macromolecules must be much more thermostable than those from mesophilic species. Here, proteins from hyperthermophiles and mesophiles are compared with respect to their thermodynamic and kinetic stabilities. The known differences in amino acid sequences and three-dimensional structures between intrinsically thermostable and thermolabile proteins will be summarized, and the crucial role of electrostatic interactions for protein stability at high temperatures will be highlighted. Successful attempts to increase the thermostability of proteins, which were either based on rational design or on directed evolution, are presented. The relationship between high thermo-stability of enzymes from hyperthermophiles and their low catalytic activity at room temperature is discussed. Not all proteins from hyperthermophiles are thermostable enough to retain their structures and functions at the high physiological temperatures. It will be shown how this shortcoming can be surpassed by extrinsic factors such as large molecular chaperones and small compatible solutes. Finally, the potential of thermostable enzymes for biotechnology is discussed.  相似文献   

20.
For the development of a method capable of predicting single point mutations substantially affecting protein thermostability, we studied the effect of the E85R and R82E mutations on the thermostability of thioredoxins from Escherichia coli (Trx) andBacillus acidocaldarius (BacTrx), respectively. The basic method of investigation was the molecular dynamics simulation of 3D protein models in an explicit solvent at different temperatures (300 and 373 K). Some thermolabile regions in Trx, BacTrx, and their mutants were revealed by analyzing the temperature effect on the molecular dynamics of the protein molecule. The effect of single point mutations on the temperature changes of the protein conformation flexibility in several thermolabile regions was found. The results of the simulations are in accord with experimental data indicating that the mutation E85R increases Trx thermostability, whereas the mutation R82E decreases BacTrx thermostability. The thermostability of these proteins was revealed to depend on ionic interactions between the thermolabile regions. The single point mutations change the parameters of these interactions and make them more favorable in the E85R-Trx mutant and less favorable in the R82E-BacTrx mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号