首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S M Lemon  E Amphlett    D Sangar 《Journal of virology》1991,65(10):5636-5640
High concentrations of either trypsin or chymotrypsin caused nearly complete cleavage of capsid protein VP2 of hepatitis A virus but did not significantly reduce the infectivity, thermostability, or antigenicity of the virus. Chymotrypsin also had a lesser effect on VP1. These findings indicate the presence of a protease-accessible VP2 surface site which neither contributes significantly to the dominant antigenic site nor plays a role in the attachment of the virus to putative cell receptors.  相似文献   

2.
Variants of hepatitis A virus (pHM175 virus) recovered from persistently infected green monkey kidney (BS-C-1) cells induced a cytopathic effect during serial passage in BS-C-1 or fetal rhesus kidney (FRhK-4) cells. Epitope-specific radioimmunofocus assays showed that this virus comprised two virion populations, one with altered antigenicity including neutralization resistance to monoclonal antibody K24F2, and the other with normal antigenic characteristics. Replication of the antigenic variant was favored over that of virus with the normal antigenic phenotype during persistent infection, while virus with the normal antigenic phenotype was selected during serial passage. Viruses of each type were clonally isolated; both were cytopathic in cell cultures and displayed a rapid replication phenotype when compared with the noncytopathic passage 16 (p16) HM175 virus which was used to establish the original persistent infection. The two cytopathic virus clones contained 31 and 34 nucleotide changes from the sequence of p16 HM175. Both shared a common 5' sequence (bases 30 to 1677), as well as sequence identity in the P2-P3 region (bases 3249 to 5303 and 6462 to 6781) and 3' terminus (bases 7272 to 7478). VP3, VP1, and 3Cpro contained different mutations in the two virus clones, with amino acid substitutions at residues 70 of VP3 and 197 and 276 of VP1 of the antigenic variant. These capsid mutations did not affect virion thermal stability. A comparison of the nearly complete genomic sequences of three clonally isolated cytopathic variants was suggestive of genetic recombination between these viruses during persistent infection and indicated that mutations in both 5' and 3' nontranslated regions and in the nonstructural proteins 2A, 2B, 2C, 3A, and 3Dpol may be related to the cytopathic phenotype.  相似文献   

3.
The purified capsid proteins VP1, VP2, and VP3 of foot-and-mouth disease virus type A12 strain 119 emulsified with incomplete Freund's adjuvant were studied in swine and guinea pigs. Swine inoculated on days 0, 28, and 60 with 100-mug doses of VP3 were protected by day 82 against exposure to infected swine. Serums from animals inoculated with VP3 contained viral precipitating and neutralizing antibodies, but such serums recognized fewer viral antigenic determinants than did antiviral serums. Capsid proteins VP1 and VP2 did not produce detectable antiviral antibody in guinea pigs, and antiviral antibody responses in swine to a mixture of VP1, VP2, and VP3 were lower than the responses to VP3 alone. However, when swine were inoculated with VP1, VP2, and VP3 separately at different body sites, no interference with the response to VP3 was observed. Vaccine containing VP3 isolated from acetylethylenimine-treated virus appeared less protective for swine than vaccine containing VP3 from nontreated virus. Trypsinized virus, which contains the cleaved peptides VP3a and VP3b rather than intact VP3, produced approximately the same levels of antiviral antibody responses in guinea pigs as did virus. Conversely, an isolated mixture of VP3a and VP3b did not produce detectable antiviral antibody responses in guinea pigs. The VP3a-VP3b mixture did, however, sensitize guinea pigs to elicit such responses following reinoculation with a marginally effective dose of trypsinized virus.  相似文献   

4.
We examined the antigenic structure of human hepatitis A virus (HAV) by characterizing a series of 21 murine monoclonal-antibody-resistant neutralization escape mutants derived from the HM175 virus strain. The escape phenotype of each mutant was associated with reduced antibody binding in radioimmunofocus assays. Neutralization escape mutations were identified at the Asp-70 and Gln-74 residues of the capsid protein VP3, as well as at Ser-102, Val-171, Ala-176, and Lys-221 of VP1. With the exception of the Lys-221 mutants, substantial cross-resistance was evident among escape mutants tested against a panel of 22 neutralizing monoclonal antibodies, suggesting that the involved residues contribute to epitopes composing a single antigenic site. As mutations at one or more of these residues conferred resistance to 20 of 22 murine antibodies, this site appears to be immunodominant in the mouse. However, multiple mutants selected independently against any one monoclonal antibody had mutations at only one or, at the most, two amino acid residues within the capsid proteins, confirming that there are multiple epitopes within this antigenic site and suggesting that single-amino-acid residues contributing to these epitopes may play key roles in the binding of individual antibodies. A second, potentially independent antigenic site was identified by three escape mutants with different substitutions at Lys-221 of VP1. These mutants were resistant only to antibody H7C27, while H7C27 effectively neutralized all other escape mutants. These data support the existence of an immunodominant neutralization site in the antigenic structure of hepatitis A virus which involves residues of VP3 and VP1 and a second, potentially independent site involving residue 221 of VP1.  相似文献   

5.
Hepatitis delta virus (HDV), a recently discovered infectious agent, participates in severe, often lethal forms of acute and chronic hepatitis and liver cirrhosis. Based on theoretical analysis of secondary structure, hydrophilicity and acrophilicity data, several regions of HDV antigen, presumably containing B-epitopes, have been revealed and the corresponding peptides have been synthesized by the solid phase method. All the peptides obtained reacted with the respective antipeptide rabbit sera. The peptides and their conjugates with BSA or KLH were used for ELISA with individual and pooled anti-HD-positive sera from patients with chronic delta hepatitis. The high antigenicity of the peptide 65-80 shows that one of the antigenically active regions of HDAg is situated between these amino acid residues and that the peptide may be used for detection of anti-HD antibodies in patients blood sera.  相似文献   

6.
The dominant T cell determinant on moth and pigeon cytochromes c in B10.A (E beta k:E alpha k) mice is located in the C-terminal portion of the protein, contained within residues 93-103 or 93-104. Thirty-seven antigen analogs, containing single amino acid substitutions at positions 98, 99, 101, 102, 103, and 104, were synthesized. The effects of the substitutions on in vitro antigenicity and in vivo immunogenicity were determined. Functional assays with T cell clones identified residues 99, 101, 102, and 103 as critical, based on their effect on antigenic potency. Peptides containing substitutions at residues 99, 101, and 102 were capable of eliciting unique clones upon immunization of B10.A mice. This was consistent with the identification of these residues as part of the epitope, the site on the antigen that interacts with the T cell receptor. Immunization with peptides substituted at residue 103, however, failed to elicit clones with unique specificity for the immunogen. When these peptides were tested for their ability to stimulate the T cell clones with antigen-presenting cells from B10.A(5R) mice expressing the E beta b:E alpha k Ia molecule, a consistent change in the relative antigenic potency was observed with 50% of the peptides. The effect of the Ia molecule on the antigenic potency ruled out the possibility that residue 103 nonspecifically affected antigen uptake or processing and identified residue 103 as part of the agretope, the site that interacts with the Ia molecule. The locations of the agretope and the epitope on this antigenic determinant appear to be fixed, even in the presence of large numbers of amino acid substitutions. However, some substitutions were found to affect both the agretope and the epitope, placing limits on the functional independence of the two sites. The results are discussed in terms of the trimolecular complex model of T cell activation and the implications of these data for antigen-Ia molecule interactions.  相似文献   

7.
Haro I  Pérez S  García M  Chan WC  Ercilla G 《FEBS letters》2003,540(1-3):133-140
Multiple antigen peptides (MAP) have been demonstrated to be efficient immunological reagents for the induction of immune responses to a variety of infectious agents. Several peptide domains of the hepatitis A virus (HAV) capsid proteins, mainly VP1 and VP3, are the immunodominant targets for a protective antibody response. In the present study we analyse the immunogenic properties of a tetrameric heterogeneous palmitoyl-derivatised MAP containing two defined HAV peptide sequences, VP1(11–25) and VP3(102–121), in rabbits immunised with either Freund’s adjuvant or multilamellar liposomes. The immune response was evaluated with a specific enzyme immunoassay using MAP[VP1+VP3], VP1 and VP3 as targets. The avidity of the immune response was measured by a non-competitive enzyme-linked immunosorbent assay and by the surface plasmon resonance technology. Antisera raised against the lipo-MAP peptide entrapped in liposomes demonstrated high avidity of binding with affinity rate constants approximately one order of magnitude greater than those obtained with the Freund’s protocol.  相似文献   

8.
The fine structure of the antigenic determinants of herpes simplex virus type 1 and 2 glycoprotein D (gD) was analyzed to determine whether structural differences underlie the differential immunogenicity of these glycoproteins. A region common to herpes simplex virus type 1 and 2 gD (amino acid residues 11 to 19) and two sites specific for herpes simplex virus type 2 gD (one determined by proline at position 7, the other determined by asparagine at position 21) were localized within the N-terminal 23 amino acids of gD by synthesis of peptides and comparison of their cross-reactivity with antisera raised to herpes simplex virus type 1 and 2 gD. The secondary structure of these peptides, as predicted by computer analysis, is discussed in relation to their immunogenicity.  相似文献   

9.
The capsid proteins VP2 and VP3 of infectious bursal disease virus, a birnavirus, are derived from the processing of a large polyprotein: NH2-pVP2-VP4-VP3-COOH. Although the primary cleavage sites at the pVP2-VP4 and VP4-VP3 junctions have been identified, the proteolytic cascade involved in the processing of this polyprotein is not yet fully understood, particularly the maturation of pVP2. By using different approaches, we showed that the processing of pVP2 (residues 1 to 512) generated VP2 and four small peptides (residues 442 to 487, 488 to 494, 495 to 501, and 502 to 512). We also showed that in addition to VP2, at least three of these peptides (residues 442 to 487, 488 to 494, and 502 to 512) were associated with the viral particles. The importance of the small peptides in the virus cycle was assessed by reverse genetics. Our results showed that the mutants lacking the two smaller peptides were viable, although the virus growth was affected. In contrast, deletions of the domain 442 to 487 or 502 to 512 did not allow virus recovery. Several amino acids of the peptide 502 to 512 appeared essential for virus viability. Substitutions of the P1 and/or P1" position were engineered at each of the cleavage sites (P1-P1": 441-442, 487-488, 494-495, 501-502, and 512-513). Most substitutions at the pVP2-VP4 junction (512-513) and at the final VP2 maturation cleavage site (441-442) were lethal. Mutations of intermediate cleavage sites (487-488, 494-495, and 501-502) led to viable viruses showing different but efficient pVP2 processing. Our data suggested that while peptides 488 to 494 and 495 to 501 play an accessory role, peptides 442 to 487 and 502 to 512 have an unknown but important function within the virus cycle.  相似文献   

10.
The interaction of an RGD-containing epitope from the hepatitis A virus VP3 capsid protein and its RGA-analogue with lipid membranes was studied by biophysical methods. Two types of model membrane were used: vesicles and monolayers spread at the air/water interface, with a composition that closely resembles the lipid moiety of hepatocyte membranes: PC/SM/PE/PC (40:33:12:15; PC: 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM: sphingomyelin from chicken egg yolk; PE, 1,2-dipalmitoyl-phosphatidylethanolamine; PS: L-alpha-phosphatidyl-L-serine from bovine brain). In addition, zwitterionic PC/SM/PE (47:39:14) and cationic PC/SM/PE/DOTAP (40:33:12:15; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane) membranes were also prepared in order to dissect the electrostatic and hydrophobic components in the interaction. Changes in tryptophan fluorescence, acrylamide quenching, and resonance energy transfer experiments in the presence of vesicles, as well as the kinetics of insertion in monolayers, indicate that both peptides bind to the three types of membrane at neutral and acidic pH; however, binding is irreversible only at low pH. Membrane-destabilizing and fusogenic activities are triggered by acidification at pH 4-6, characteristic of the endosome. Fluorescence experiments show that VP3-RGD and VP3-RGA induce mixing of lipids and leakage or mixing of aqueous contents in anionic and cationic vesicles at pH 4-6, indicating leaky fusion. Interaction with zwitterionic vesicles (PC/SM/PE) results in leakage without lipid mixing, indicating pore formation. Replacement of aspartic acid in the RGD motif by alanine maintains the membrane-destabilizing properties of the peptide at low pH, but not its antigenicity. Since the RGD tripeptide is related to receptor-mediated cell adhesion and antigenicity, results suggest that receptor binding is not a molecular requirement for fusion. The possible involvement of peptide-induced membrane destabilization in the mechanism of hepatitis A virus infection of hepatocytes by the endosomal route is discussed.  相似文献   

11.
Functional reproduction of discontinuous antigenic site D of foot-and-mouth disease virus (FMDV) has been achieved by means of synthetic peptide constructions that integrate into a single molecule each of the three protein loops that define the antigenic site. The site D mimics are designed on the basis of the X-ray structure of FMDV type C-S8c1 with the aid of molecular dynamics, so that the five residues assumed to be involved in antigenic recognition are located on the same face of the molecule, exposed to solvent and defining a set of native-like distances and angles. The designed site D mimics are disulphide-linked heterodimers that consist of a larger unit containing VP2(71-84), followed by a polyproline module and by VP3(52-62), and a smaller unit corresponding to VP1(188-194). Guinea pig antisera to the peptides recognize the viral particle and compete with site D-specific monoclonal antibodies, while inoculation with a simple (non-covalently bound) admixture of the three VP1-VP3 sequences yields no detectable virus-specific serum conversion. Similar results have been reproduced in two cattle. Antisera to the peptides are also moderately neutralizing of FMDV in cell culture and partially protective of guinea pigs against challenge with the virus. These results demonstrate functional mimicry of the discontinuous site D by the peptides, which are therefore obvious candidates for a multicomponent peptide-based vaccine against FMDV.  相似文献   

12.
Using three serotypes (four strains) of cultivable porcine rotavirus as immunizing antigens, 10 neutralizing monoclonal antibodies were characterized. One VP4-specific monoclonal antibody directed against porcine rotavirus BEN-144 (serotype G4) neutralized human rotavirus strain ST-3 in addition to the homologous porcine virus. All nine VP7-specific monoclonal antibodies were highly specific for viruses of the same serotype as the immunizing rotavirus strain. One exception was the VP7-specific monoclonal antibody C3/1, which neutralized both serotype G3 and G5 rotaviruses. However, this monoclonal antibody did not neutralize the porcine rotavirus AT/76, also of serotype G3, nor mutants of SA-11 virus (serotype G3) which were selected with monoclonal antibody A10/N3 and are known to have mutations affecting the C antigenic region.  相似文献   

13.
For biomonitoring environmental exposure to acrylonitrile (AN), a monoclonal antibody (mAb) A2D1, was developed to recognize specifically the hemoglobin (Hb) adduct, Hb-AN, but not Hb itself. This appears to be the first example that a small molecule-like AN may introduce new antigenicity into hemoglobin, which already exhibits multiple antigenic determinants. This report addresses the localization of the newly formed antigenic sites in human Hb-AN. As antigenic probes, the AN conjugates of 10 amino acids, six dipeptides, and four tripeptides were prepared as monitored by 1H NMR, and their antigenicity was evaluated by competitive inhibition immunoassay. A Lys-epsilonNH-AN was found essential to inhibiting activity. The potent peptide-AN inhibitors, containing a sequence of His and Lys, showed IC50 at the micromolar concentration, thus implicating human Hbalpha-89,90 and Hbbeta-143,144 in the distal heme pocket region as the new antigenic sites.  相似文献   

14.
15.
We have studied the functional expression of antigenic poliovirus fragments carried by various hybrid hepatitis B surface antigen (HBsAg) particles. Several constructions were made by using two different insertion sites in the HBsAg molecule (amino acid positions 50 and 113) and two different sequences, one derived from poliovirus type 1 (PV-1) and the other from PV-2. The inserted fragments each encompassed residues 93 to 103 of the capsid protein VP1, a segment which includes the linear part of the neutralization antigenic site 1 of the poliovirus. The antigenicity and immunogenicity of the hybrid particles were evaluated and compared in terms of poliovirus neutralization. A high level of antigenic and immunogenic activity of the PV-1 fragment was obtained by insertion at position 113 but not at position 50 of HBsAg. However, a cooperative effect was observed when two PV-1 fragments were inserted at both positions of the same HBsAg molecule. Antibodies elicited by the PV-2 fragment inserted at amino acid position 113 did not bind or neutralize the corresponding poliovirus strain. They did, however, bind a chimeric poliovirus in which the homologous antigenic fragment of PV-1 had been replaced by that of PV-2. The only virions that were neutralized by these antibodies were certain mutants carrying amino acid substitutions within the PV-2 fragment. These results show that position, constraints from the carrier protein, and nature of the inserted sequences are critically important in favoring or limiting the expression of antigenic fragments as viral neutralization immunogens.  相似文献   

16.
A transgenic mouse model was used to identify an HLA-A*02-restricted epitope within the VP1 polypeptide of a human polyomavirus, BK virus (BKV), which is associated with polyomavirus-associated nephropathy in kidney transplant patients. Peptide stimulation of splenocytes from mice immunized with recombinant modified vaccinia virus Ankara expressing BKV VP1 resulted in expansion of cytotoxic T lymphocytes (CTLs) recognizing the sequence LLMWEAVTV corresponding to amino acid residues 108 to 116 (BKV VP1p108). These effector T-cell populations represented functional CTLs as assessed by cytotoxicity and cytokine production and were cross-reactive against antigen-presenting cells pulsed with a peptide corresponding to the previously described JC virus (JCV) VP1 homolog sequence ILMWEAVTL (JCV VP1p100) (I. J. Koralnik et al., J. Immunol. 168:499-504, 2002). A panel of 10 healthy HLA-A*02 human volunteers and two kidney transplant recipients were screened for T-cell immunity to this BK virus VP1 epitope by in vitro stimulation of their peripheral blood mononuclear cells (PBMC) with the BKV VP1p108 peptide, followed by tetramer labeling combined with simultaneous assays to detect intracellular cytokine production and degranulation. PBMC from 4/10 subjects harbored CTL populations that recognized both the BKV VP1p108 and the JCV VP1p100 peptides with comparable efficiencies as measured by tetramer binding, gamma interferon production, and degranulation. CTL responses to the JCV VP1p100 epitope have been associated with prolonged survival in progressive multifocal leukoencephalopathy patients (R. A. Du Pasquier et al., Brain 127:1970-1978, 2004; I. J. Koralnik et al., J. Immunol. 168:499-504, 2002). Given that both human polyomaviruses are resident in a high proportion of healthy individuals and that coinfection occurs (W. A. Knowles et al., J. Med. Virol. 71:115-123, 2003), our findings suggest a reinterpretation of this protective T-cell immunity, suggesting that the same VP1 epitope is recognized in HLA-A*02 persons in response to either BK or JC virus infection.  相似文献   

17.
V V Mesianzhinov 《Biofizika》1986,31(6):961-963
A comparative analysis of amino acid sequence of the proteins VP1 of hepatitis A virus and poliovirus of the 1 type was carried out. A model is proposed of structural organization of VP1 of hepatitis A virus providing the presence of a bilayer core formed by 8 antiparallel beta-strands. Probable candidates for surface antigenic determinants are the amino acid sequences located in unordered fragments of the polypeptide chain (residues 101-106 and 115-125), and alpha-helical region (residues 127-135).  相似文献   

18.
The predictive algorithm Surfaceplot (J.M.R. Parker, D. Guo, and R.S. Hodges, Biochemistry 25:5425-5432, 1986) was used to examine glycoprotein D of herpes simplex virus type 1 (HSV-1) for amino acid residues with a high probability of being exposed on the molecular surface. Based on these data, 11 different peptides corresponding to 10-residue segments in the primary sequence of glycoprotein D and one 20-residue segment were synthesized, conjugated to carrier proteins, and used to generate specific antisera in rabbits. Two synthetic peptides predicted not to be on the surface of glycoprotein D were included as negative controls. The polyclonal antisera against individual synthetic peptide conjugates were in turn evaluated for their ability to recognize both isolated glycoprotein D and intact HSV-1 virions in an enzyme-linked immunosorbent assay. Based on Surfaceplot predictions, eight linear antigenic sites on glycoprotein D were thereby defined from the 12 antipeptide antisera prepared. Four of these sites contained epitopes to which complement-independent neutralizing antibodies could be generated. The latter sites corresponded to sequences 12 to 21, 267 to 276, 288 to 297, and 314 to 323 of the mature protein. An additional peptide sequence, 2 to 21, was found to generate antisera which had potent virus-neutralizing capacity in the presence of complement. Identification of a neutralizing epitope in the sequence 314 to 323 makes it likely that the membrane-spanning region of glycoprotein D is within the subsequent sequence, 323 to 339. Antipeptide antisera prepared in this study from 12 synthetic peptides contained 13 surface sites predicted by Surfaceplot, of which 7 were not predicted by the parameters of Hopp and Woods (Proc. Natl. Acad. Sci. USA 78:3824-3828, 1981). Of these seven sites not predicted by the Hopp and Woods plot, all generated antipeptide antibodies that bound to HSV-1 virions and three of these seven sites generated neutralizing antibodies. In total, 8 of 12 synthetic peptides containing surface regions produced antipeptide antibodies that bound to HSV-1 virions and 5 of these generated neutralizing antibodies. These results suggest the advantages of Surfaceplot in mapping antigenic determinants in proteins.  相似文献   

19.
Mimotopes mimic binding properties of natural antigen epitopes. They could be used for vaccine design, drugs development, and diagnostic assays. We have previously identified four bacteriophages displaying hepatitis A virus (HAV) mimotopes from a phage-display peptide library by affinity selection on serum antibodies from hepatitis A patients. Three of these HAV mimotopes showed similarity in their amino acid sequences with at least one of the VP3 and VP1 antigenic proteins of HAV and the four induced specific anti-HAV antibodies. In the present work, four conjugations were done. In each of them, a linear peptide (46, 53, 54 or 56) containing the amino-acid sequence of the corresponding mimotope was conjugated to keyhole limpet hemocyanin (KLH). Conjugation products were named: 46KLH, 53KLH, 54KLH and 56KLH. A two-arm multiple antigen peptide (MAP) system containing peptide sequence 46, and a second MAP containing two copies of peptide sequence 56 were synthesized and dimerized, to obtain the heterodimeric four-arms MAP (named MAP46-56) containing two copies of peptides 46 and 56. Mice were immunized with peptides conjugated to KLH and MAP46-56 to evaluate the ability of these two forms of mimotope presentation, to elicit antibodies that bind to the original antigen. KLH conjugated peptides rendered the highest levels of anti-peptide antibodies and were the only ones that induced specific anti-HAV antibodies. The results of immunizations showed that for the mimotopes chosen here, conjugation to a carrier protein was the most effective option to induce antibodies that cross-reacted with the natural antigen.  相似文献   

20.
Peptide VP1 (11-25) of the capsid of hepatitis A virus was synthesized by the Fmoc-polyamide solid phase method, and administered to mice in different forms: (1) free, (2) encapsulated in multilamellar liposomes, (3) coupled to keyhole limpet hemocyanin (KHL), and (4) incorporated into a tetrameric branched lysine core. The highest anti-VP1 peptide responses were generated by synthetic peptides entrapped into liposomes and coupled to KLH. No anti-HAV response was generated with the free peptide, while all the other forms induced both anti-HAV and HAV-neutralizing antibodies. Maximum neutralization indices were observed in ascites from mice treated with liposome-entrapped and KLH peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号