首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malonyl-CoA and 2-tetradecylglycidyl-CoA (TG-CoA) are potent inhibitors of mitochondrial carnitine palmitoyltransferase I (EC 2.3.1.21). To gain insight into their mode of action, the effects of both agents on mitochondria from rat liver and skeletal muscle were examined before and after membrane disruption with octylglucoside or digitonin. Pretreatment of intact mitochondria with TG-CoA caused almost total suppression of carnitine palmitoyltransferase I, with concomitant loss in malonyl-CoA binding capacity. However, subsequent membrane solubilization with octylglucoside resulted in high and equal carnitine palmitoyltransferase activity from control and TG-CoA pretreated mitochondria; neither solubilized preparation showed sensitivity to malonyl-CoA or TG-CoA. Upon removal of the detergent by dialysis the bulk of carnitine palmitoyltransferase was reincorporated into membrane vesicles, but the reinserted enzyme remained insensitive to both inhibitors. Carnitine palmitoyltransferase containing vesicles failed to bind malonyl-CoA. With increasing concentrations of digitonin, release of carnitine palmitoyltransferase paralleled disruption of the inner mitochondrial membrane, as reflected by the appearance of matrix enzymes in the soluble fraction. The profile of enzyme release was identical in control and TG-CoA pretreated mitochondria even though carnitine palmitoyltransferase I had been initially suppressed in the latter. Similar results were obtained when animals were treated with 2-tetradecylglycidate prior to the preparation of liver mitochondria. We conclude that malonyl-CoA and TG-CoA interact reversibly and irreversibly, respectively, with a common site on the mitochondrial (inner) membrane and that occupancy of this site causes inhibition of carnitine palmitoyltransferase I, but not of carnitine palmitoyltransferase II. Assuming that octylglucoside and digitonin do not selectively inactivate carnitine palmitoyltransferase I, the data suggest that both malonyl-CoA and TG-CoA interact with a regulatory locus that is closely juxtaposed to but distinct from the active site of the membrane-bound enzyme.  相似文献   

2.
The effect of malonyl-CoA on the kinetic parameters of carnitine palmitoyltransferase (outer) the outer form of carnitine palmitoyltransferase (palmitoyl-CoA: L-carnitine O-palmitoyltransferase, EC 2.3.1.21) from rat heart mitochondria was investigated using a kinetic analyzer in the absence of bovine serum albumin with non-swelling conditions and decanoyl-CoA as the cosubstrate. The K0.5 for decanoyl-CoA is 3 microM for heart mitochondria from both fed and fasted rats. Membrane-bound carnitine palmitoyltransferase (outer) shows substrate cooperativity for both carnitine and acyl-CoA, similar to that exhibited by the enzyme purified from bovine heart mitochondria. The Hill coefficient for decanoyl-CoA varied from 1.5 to 2.0, depending on the method of assay and the preparation of mitochondria. Malonyl-CoA increased the K0.5 for decanoyl-CoA with no apparent increase in sigmoidicity or Vmax. With 20 microM malonyl-CoA and a Hill coefficient of n = 2.1, the K0.5 for decanoyl-CoA increased to 185 microM. Carnitine palmitoyltransferase (outer) from fed rats had an apparent Ki for malonyl-CoA of 0.3 microM, while that from 48-h-fasted rats was 2.5 microM. The kinetics with L-carnitine were variable: for different preparations of mitochondria, the K0.5 ranged from 0.2 to 0.7 mM and the Hill coefficient varied from 1.2 to 1.8. When an isotope forward assay was used to determine the effect of malonyl-CoA on carnitine palmitoyltransferase (outer) activity of heart mitochondria from fed and fasted animals, the difference was much less than that obtained using a continuous rate assay. Carnitine palmitoyltransferase (outer) was less sensitive to malonyl-CoA at low compared to high carnitine concentrations, particularly with mitochondria from fasted animals. The data show that carnitine palmitoyltransferase (outer) exhibits substrate cooperativity for both acyl-CoA and L-carnitine in its native state. The data show that membrane-bound carnitine palmitoyltransferase (outer) like carnitine palmitoyltransferase purified from heart mitochondria exhibits substrate cooperativity indicative of allosteric enzymes and indicate that malonyl-CoA acts like a negative allosteric modifier by shifting the acyl-CoA saturation to the right. A slow form of membrane-bound carnitine palmitoyltransferase (outer) was not detected, and thus, like purified carnitine palmitoyltransferase, substrate-induced hysteretic behavior is not the cause of the positive substrate cooperativity.  相似文献   

3.
1. Liver carnitine acyltransferase activities with palmitoyl-CoA and octanoyl-CoA as substrates and heart carnitine palmitoyltransferase were measured as overt activities in whole mitochondria or in mitochondria disrupted by sonication or detergent treatment. All measurements were made in sucrose/KCl-based media of 300 mosmol/litre. 2. In liver mitochondria, acyltransferase measured with octanoyl-CoA, like carnitine palmitoyltransferase, was found to have latent and overt activities. 3. Liver acyltransferase activities measured with octanoyl-CoA and palmitoyl-CoA differed in their response to changes in [K+], Triton X-100 treatment and, in particular, in their response to Mg2+. Mg2+ stimulated activity with octanoyl-CoA, but inhibited carnitine palmitoyltransferase. 4. The effects of K+ and Mg2+ on liver overt carnitine palmitoyltransferase activity were abolished by Triton X-100 treatment. 5. Heart overt carnitine palmitoyltransferase activity differed from the corresponding activity in liver in that it was more sensitive to changes in [K+] and was stimulated by Mg2+. Heart had less latent carnitine palmitoyltransferase activity than did liver. 6. Overt carnitine palmitoyltransferase in heart mitochondria was extremely sensitive to inhibition by malonyl-CoA. Triton X-100 abolished the effect of low concentrations of malonyl-CoA on this activity. 7. The inhibitory effect of malonyl-CoA on heart carnitine palmitoyltransferase could be overcome by increasing the concentration of palmitoyl-CoA.  相似文献   

4.
Malonyl-CoA significantly increased the Km for L-carnitine of overt carnitine palmitoyltransferase in liver mitochondria from fed rats. This effect was observed when the molar palmitoyl-CoA/albumin concentration ratio was low (0.125-1.0), but not when it was higher (2.0). In the absence of malonyl-CoA, the Km for L-carnitine increased with increasing palmitoyl-CoA/albumin ratios. Malonyl-CoA did not increase the Km for L-carnitine in liver mitochondria from 24h-starved rats or in heart mitochondria from fed animals. The Km for L-carnitine of the latent form of carnitine palmitoyltransferase was 3-4 times that for the overt form of the enzyme. At low ratios of palmitoyl-CoA/albumin (0.5), the concentration of malonyl-CoA causing a 50% inhibition of overt carnitine palmitoyltransferase activity was decreased by 30% when assays with liver mitochondria from fed rats were performed at 100 microM-instead of 400 microM-carnitine. Such a decrease was not observed with liver mitochondria from starved animals. L-Carnitine displaced [14C]malonyl-CoA from liver mitochondrial binding sites. D-Carnitine was without effect. L-Carnitine did not displace [14C]malonyl-CoA from heart mitochondria. It is concluded that, under appropriate conditions, malonyl-CoA may decrease the effectiveness of L-carnitine as a substrate for the enzyme and that L-carnitine may decrease the effectiveness of malonyl-CoA to regulate the enzyme.  相似文献   

5.
The sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA was increased in mitochondria isolated from rat hepatocytes incubated with ethanol. This effect was mimicked by incubation of hepatocytes with acetaldehyde or by preincubation of isolated mitochondria with malonyl-CoA. Both ethanol and acetaldehyde increased the intracellular concentration of malonyl-CoA. Results suggest that the ethanol-induced elevation of intracellular malonyl-CoA levels may be responsible for the enhanced sensitivity of carnitine palmitoyltransferase I to inhibition by malonyl-CoA.  相似文献   

6.
Carnitine palmitoyltransferase activity and malonyl-CoA binding capacity have been studied in Triton X-100 extracts and membrane residues of rat liver mitochondria. Rat liver mitochondria extracted twice with 0.5% Triton X-100 in a salt-free medium showed increased specific binding of [2-14C]malonyl-CoA when compared with intact mitochondria. High malonyl-CoA binding required the presence of salts and was inhibited by albumin. Further solubilization of the membrane residues in the Triton/KCl medium and subsequent hydroxylapatite chromatography gave a complete separation of carnitine palmitoyltransferase and malonyl-CoA binding. The results show that malonyl-CoA binds to mitochondrial component(s) which is different from and more difficult to extract from the mitochondrial membrane than most of the carnitine palmitoyltransferase.  相似文献   

7.
Solubilization of rat liver mitochondria in 5% Triton X-100 followed by chromatography on a hydroxylapatite column resulted in the identification of malonyl-CoA binding protein(s) distinct from a major carnitine palmitoyltransferase activity peak. Further purification of the malonyl-CoA binding protein(s) on an acyl-CoA affinity column followed by sodium dodecyl sulfate gel electrophoresis indicated proteins with Mr mass of 90 and 45-33 kDa. A purified liver malonyl-CoA binding fraction, which was devoid of carnitine palmitoyltransferase, and a soluble malonyl-CoA-insensitive carnitine palmitoyltransferase were reconstituted by dialysis in a liposome system. The enzyme activity in the reconstituted system was decreased by 50% in the presence of 100 microM malonyl-CoA. Rat liver mitochondria carnitine palmitoyltransferase may be composed of an easily dissociable catalytic unit and a malonyl-CoA sensitivity conferring regulatory component.  相似文献   

8.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) normal rats and of fed and starved thyroidectomized rats. 2. In the fed state thyroidectomy substantially decreased overt carnitine palmitoyltransferase activity and also decreased both the Hill coefficient and the s0.5 when palmitoyl-CoA concentration was varied as substrate. Thyroidectomy did not appreciably alter the inhibitory effect of malonyl-CoA on the enzyme. 3. Starvation increased overt carnitine palmitoyltransferase activity in both the fed and the thyroidectomized state. In percentage terms this response to starvation was substantially greater after thyroidectomy. In both the hypothyroid and normal states starvation decreased sensitivity to inhibition by malonyl-CoA.  相似文献   

9.
The hepatic carnitine palmitoyltransferase that is present on the outer surface of the mitochondrial inner membrane demonstrates hyperbolic substrate saturation curves with oleoyl-CoA in both fasted and fed rats. However, the addition of malonyl-CoA resulted in sigmoid substrate saturation curves, suggesting that malonyl-CoA induced the cooperative behavior. There was more of the outer carnitine palmitoyltransferase in liver mitochondria derived from fasted rats and that enzyme had a much greater Ki for malonyl-CoA than the enzyme from fed rats, but the Km values were apparently not different. The Dixon plot with mitochondria from fed rats, but not fasted rats, was curved upward, indicating cooperative inhibition by malonyl-CoA. Carnitine palmitoyltransferase of heart mitochondria had a Ki for malonyl-CoA that was much less than that of the liver enzyme and it did not change on fasting. Furthermore, no evidence for cooperative inhibition was found in the heart. The results of these studies indicate that carnitine palmitoyltransferase is not subject to substrate cooperativity and that malonyl-CoA is not a simple competitive inhibitor of this enzyme but inhibits by a mechanism involving cooperative inhibition. The fasting-feeding cycle induces changes in the liver enzyme that alter its affinity for malonyl-CoA without changing its affinity for its acyl-CoA substrate. Carnitine palmitoyltransferase from heart appears to be different from that of liver and is apparently not subject to the same control mechanisms.  相似文献   

10.
1. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities were measured in mitochondria at various acyl-CoA concentrations before and after sonication, thus permitting assessment of both overt and latent activities. 2. Overt carnitine palmitoyltransferase in liver and adipocyte mitochondria and overt carnitine octanoyltransferase in liver mitochondria were inhibited by malonyl-CoA. None of the latent activities were affected by this metabolite. 3. 5,5'-Dithiobis-(2-nitrobenzoic acid) stimulated latent hepatic carnitine palmitoyltransferase at low [palmitoyl-CoA]. 4. Starvation (24 h) decreased overt carnitine palmitoyltransferase activity in adipocyte mitochondria, but did not alter the sensitivity of this activity to malonyl-CoA.  相似文献   

11.
Continuous assays of carnitine palmitoyltransferase were used to study the hysteretic behaviour of the enzyme. When reactions were started by adding mitochondria to complete reaction mixtures, there was a lag in the assay even in the absence of malonyl-CoA. When mitochondria were preincubated with malonyl-CoA in the absence of palmitoyl-CoA, there was a greater lag period in the assay of carnitine palmitoyltransferase, but this lag was less prominent at 37 degrees C than at 30 degrees C. Preincubation of mitochondria with malonyl-CoA did not change the sensitivity of the enzyme to inhibition by malonyl-CoA.  相似文献   

12.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) virgin female and fed and starved pregnant rats. 2. In the fed state overt carnitine palmitoyltransferase activity was significantly lower in virgin females than in age-matched male rats. 3. Starvation increased overt carnitine palmitoyltransferase activity in both virgin and pregnant females. This increase was larger than in the male and was greater in pregnant than in virgin females. 4. In the fed state pregnancy had no effect on the Hill coefficient or the [S]0.5 when palmitoyl-CoA was varied as substrate. Pregnancy did not alter the sensitivity of the enzyme to inhibition by malonyl-CoA. 5. Starvation decreased the sensitivity of the enzyme to malonyl-CoA. The change in sensitivity was similar in male, virgin female and pregnant rats. 6. The possible relevance of these findings to known sex differences and changes with pregnancy in hepatic fatty acid oxidation and esterification are discussed.  相似文献   

13.
Carnitine palmitoyltransferase I in rat liver mitochondria preincubated with malonyl-CoA was more sensitive to inhibition by malonyl-CoA than was the enzyme in mitochondria preincubated in the absence of malonyl-CoA. For carnitine palmitoyltransferase I in mitochondria from starved animals this increase also resulted in the enzyme becoming significantly more sensitive than that in mitochondria assayed immediately after their isolation. Concentrations of malonyl-CoA that induced half the maximal degree of sensitization observed were 1-3 microM.  相似文献   

14.
The sensitivity of carnitine palmitoyltransferase to malonyl-CoA is lost when liver mitochondria are preincubated in a KCl-containing medium. This loss of sensitivity is slowed down in mitochondria from hypothyroid rats and accelerated in mitochondria from fasted and hyperthyroid rats. Glucagon seems to enhance the effect of fasting. The loss of sensitivity is significantly slowed down by 50-500 nM malonyl-CoA and accelerated by small amounts of palmitoyl-CoA in the preincubation medium.  相似文献   

15.
Intact mitochondria and inverted submitochondrial vesicles were prepared from the liver of fed, starved (48 h) and streptozotocin-diabetic rats in order to characterize carnitine palmitoyltransferase kinetics and malonyl-CoA sensitivity in situ. In intact mitochondria, both starved and diabetic rats exhibited increased Vmax., increased Km for palmitoyl-CoA, and decreased sensitivity to malonyl-CoA inhibition. Inverted submitochondrial vesicles also showed increased Vmax. with starvation and diabetes, with no change in Km for either palmitoyl-CoA or carnitine. Inverted vesicles were uniformly less sensitive to malonyl-CoA regardless of treatment, and diabetes resulted in a further decrease in sensitivity. In part, differences in the response of carnitine palmitoyltransferase to starvation and diabetes may reside in differences in the membrane environment, as observed with Arrhenius plots, and the relation of enzyme activity and membrane fluidity. In all cases, whether rats were fed, starved or diabetic, and whether intact or inverted vesicles were examined, increasing membrane fluidity was associated with increasing activity. Malonyl-CoA was found to produce a decrease in intact mitochondrial membrane fluidity in the fed state, particularly at pH 7.0 or less. No effect was observed in intact mitochondria from starved or diabetic rats, or in inverted vesicles from any of the treatment groups. Through its effect on membrane fluidity, malonyl-CoA could regulate carnitine palmitoyltransferase activity on both surfaces of the inner membrane through an interaction with only the outer surface.  相似文献   

16.
The effects of prolonged ethanol feeding on both carnitine palmitoyltransferase I activity and enzyme sensitivity to inhibition by malonyl-CoA were studied in rat liver, heart, skeletal muscle and kidney cortex mitochondria. Heart and skeletal muscle enzymes showed the highest specific activity and sensitivity to malonyl-CoA. Carnitine palmitoyltransferase I in extrahepatic tissues showed no changes on ethanol feeding. Only the liver enzyme activity was altered after long term ethanol administration, by suffering a progressive decrease in activity and a parallel increase in sensitivity to malonyl-CoA. These alterations reversed after 10 days of ethanol withdrawal. These results are discussed in relation to the control of carnitine palmitoyltransferase I and the effects of ethanol on fatty acid metabolism.  相似文献   

17.
The sensitivity of carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate was decreased markedly in liver mitochondria isolated from either 48 h-starved or streptozotocin-diabetic rats. These treatments of the rat also decreased the sensitivity of fatty acid oxidation by isolated hepatocytes to inhibition by this compound. Furthermore, incubation of hepatocytes prepared from fed rats with N6O2'-dibutyryl cyclic AMP also decreased the sensitivity, whereas incubation of hepatocytes prepared from starved rats with lactate plus pyruvate had the opposite effect on 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation. The sensitivity of carnitine palmitoyltransferase I of mitochondria to 4-hydroxyphenylglyoxylate increased in a time-dependent manner, as previously reported for malonyl-CoA. Likewise, oleoyl-CoA activated carnitine palmitoyltransferase I in a time-dependent manner and prevented the sensitization by 4-hydroxyphenylglyoxylate. Increased exogenous carnitine caused a moderate increase in fatty acid oxidation by hepatocytes under some conditions and a decreased 4-hydroxyphenylglyoxylate inhibition of fatty acid oxidation at low oleate concentration, without decreasing the difference in 4-hydroxyphenylglyoxylate inhibition between fed- and starved-rat hepatocytes. Time-dependent changes in the conformation of carnitine palmitoyltransferase I or the membrane environment may be involved in differences among nutritional states in 4-hydroxyphenylglyoxylate-sensitivity of carnitine palmitoyltransferase I.  相似文献   

18.
Carnitine palmitoyltransferase of liver mitochondria prepared from ketotic diabetic rats has a diminished sensitivity to inhibition by malonyl-CoA compared with carnitine palmitoyltransferase of mitochondria prepared from normal fed rats.  相似文献   

19.
An immunoaffinity column against the 86-kDa malonyl-CoA-binding protein of beef heart mitochondria was prepared, and the properties of the eluates were compared to those of eluates of an anti-carnitine palmitoyltransferase immunoaffinity column. Both eluates contain seven to eight major proteins with a malonyl-CoA-binding capacity of approximately 5 nmol/mg of protein; in contrast, the eluates from a preimmune IgG column did not contain any of the major proteins. The eluates from both immunoaffinity columns conferred malonyl-CoA sensitivity to purified rat heart mitochondrial carnitine palmitoyltransferase (CPTi/CPT-II). Addition of phospholipids increased the degree of malonyl-CoA inhibition. Doubling the amount of column eluate approximately doubled the malonyl-CoA sensitivity when added to a fixed amount of CPT; i.e., the inhibition increased from 32 to 67%. These results show that CPTi/CPT-II is capable of exhibiting malonyl-CoA sensitivity in the presence of malonyl-CoA-binding proteins. The results do not support the concept that the 86-kDa malonyl-CoA-binding protein is detergent-inactivated carnitine palmitoyltransferase I;rather, they suggest that it is a regulatory subunit of a carnitine palmitoyltransferase complex.  相似文献   

20.
Preincubation of rat liver mitochondria with 5,5'-dithiobis-(2-nitrobenzoic acid) (Nbs2) followed by removal of excess reagent by washing the mitochondria with 0.5 mM-reduced glutathione resulted in a desensitization of carnitine palmitoyltransferase (CPT) I activity to malonyl-CoA inhibition. The effect was not observed if mitochondria were washed with 0.5 mM-dithiothreitol. The desensitization effect of Nbs2 could be reversed by a second incubation in the presence of 8 microM-malonyl-CoA. In addition, malonyl-CoA, when present simultaneously with Nbs2, protected CPT I activity against the desensitization effect of the thiol-group reagent. These results suggest that malonyl-CoA exerts an effect on one or more thiol groups of the enzyme, and that this effect is related to the ability of the metabolite to sensitize CPT I to malonyl-CoA inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号