首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Invasion by alien plants can alter ecosystem processes and soil properties. In this study, we compared aboveground productivity, nutrient pools in standing biomass and topsoil (0–0.10 m) mineral nutrient concentrations between plots invaded by Early Goldenrod (Solidago gigantea) and adjacent, uninvaded, vegetation at five sites in Belgium. The five sites were characterised by a resident perennial herbaceous vegetation and spanned a wide range in soil fertility level and floristic composition. Invaded stands consistently had higher (2–3-fold) aboveground productivity and lower mineral element concentrations in standing phytomass. Nutrient pools (calculated as concentration × phytomass) was ca. twice higher in invaded plots, suggesting that S. gigantea might enhance nutrient cycling rates. Impacts on topsoil chemistry were surprisingly modest, with slightly higher nutrient concentrations under the invader. A noticeable exception was phosphorus, which showed higher concentrations of ammonium acetate-extractable fraction in invaded plots in four of five sites. It appears that S. gigantea does not significantly contribute to nutrient uplift from deep soil layers to topsoil, possibly because it does not root much deeper compared to resident vegetation.Equally contributing authors: S. Vanderhoeven, N. Dassonville  相似文献   

2.
In the present study we analyzed the combined effects of management (grazing, mowing, prescribed burning, sod-cutting) and atmospheric deposition on N and P budgets of heathland ecosystems (Lüneburger Heide nature reserve; N Germany). We hypothesize that management measures such as grazing and mowing can accelerate a deposition-induced imbalance of N and P pools as a result of a disproportionally high output of P. We analyzed management and deposition affected input–output flows of N and P and related them to changes in the nutritional status of Calluna vulgaris 5 years after treatment application. We found that grazing and mowing caused the highest net loss of P due to high P concentrations in the aboveground biomass. In contrast, prescribed burning only slightly affected P pools, as P remained in the system due to ash deposition. Management-mediated effects on N and P pools were mirrored in the nutritional status of Calluna vulgaris: at the grazed and mown sites, the P content of current season’s shoots significantly decreased within 5 years after treatments, whereas the N content remained unchanged. We conclude that grazing and mowing can accelerate declining availability of P and, thus, accelerate a deposition-induced shift from N- to P-limited plant growth in the medium term. In the face of ongoing atmospheric N loads management schemes need to combine high- and low-intensity measures to maintain both a diverse structure and balanced nutrient budgets in the long term.  相似文献   

3.
Enhanced nitrogen (N) levels accelerate expansion of Calamagrostis epigejos and Arrhenatherum elatius, highly aggressive expanders displacing original dry acidophilous grassland vegetation in the Podyjí National Park (Czech Republic). We compared the capability of Calamagrostis and Arrhenatherum under control and N enhanced treatments to (i) accumulate N and phosphorus (P) in plant tissues, (ii) remove N and P from above-ground biomass during senescence and (iii) release N and P from plant material during decomposition of fresh formed litter. In control treatment, significantly higher amounts of total biomass and fresh aboveground litter were observed in Calamagrostis than in Arrhenatherum. Contrariwise, nutrient concentrations were significantly higher (11.6–14.3 mg N g−1 and 2.3 mg P g−1) in Arrhenatherum peak aboveground biomass than in Calamagrostis (8.4–10.3 mg N g−1 and 1.6–1.7 mg P g−1). Substantial differences between species were found in resorption of nutrients, mainly P, at the ends of growing seasons. While P concentrations in Arrhenatherum fresh litter were twice and three times higher (1.6–2.5 mg P g−1) than in Calamagrostis (0.7–0.8 mg P g−1), N concentrations were nearly doubled in Arrhenatherum (13.1–15.6 mg N g−1) in comparison with Calamagrostis (7.4–8.7 mg N g−1). Thus, the nutrients (N and mainly P) were retranslocated from the aboveground biomass of Calamagrostis probably more effectively in comparison with Arrhenatherum at the end of the growing season. On the other hand, Arrhenatherum litter was decomposed faster and consequently nutrient release (mainly N and P) was higher in comparison with Calamagrostis which pointed to different growth and nutrient use strategies of studied grass species.  相似文献   

4.
Liess A  Kahlert M 《Oecologia》2007,152(1):101-111
The potential interactions of grazing, nutrients and light in influencing autotroph species diversity have not previously been considered. Earlier studies have shown that grazing and nutrients interact in determining autotroph species diversity, since grazing decreases species diversity when nutrients (i.e. N or P) limit autotroph growth, but increases it when nutrients are replete. We hypothesized that increased light intensities would intensify the interactions between grazing and nutrients on algal species diversity, resulting in even stronger reductions in algal species diversity through grazing under nutrient–poor conditions, and to even stronger increases of algal species diversity through grazing under nutrient-rich conditions. We studied the effects of grazing (absent, present), nutrients (ambient, N + P enriched) and light (low light, high light) on benthic algal diversity and periphyton C:nutrient ratios (which can indicate algal nutrient limitation) in a factorial laboratory experiment, using the gastropod grazer Viviparus viviparus. Grazing decreased algal biomass and algal diversity, but increased C:P and N:P ratios of periphyton. Grazing also affected periphyton species composition, by decreasing the proportion of Spirogyra sp. and increasing the proportion of species in the Chaetophorales. Grazing effects on diversity as well as on periphyton N:P ratios were weakened when nutrients were added (interaction between grazing and nutrients). Chlorophyll a (Chl a) per area increased with nutrient addition and decreased with high light intensities. Light did not increase the strength of the interaction between grazing and nutrients on periphytic algal diversity. This study shows that nutrient addition substantially reduced the negative effects of grazing on periphytic algal diversity, whereas light did not interact with grazing or nutrient enrichment in determining periphytic algal diversity.  相似文献   

5.
We examined the role of red deer (Cervus elaphus L.) in translocating phosphorus (P) from their preferred grazing sites (short-grass vegetation on subalpine grasslands) to their wider home range in a subalpine grassland ecosystem in the Central European Alps. Phosphorus was used because it is the limiting nutrient in these grasslands. When we compared P removal of aboveground biomass due to grazing with P input due to the deposit of feces on a grid of 268 cells (20 m × 20 m) covering the entire grassland, we detected distinct spatial patterns: the proportion of heavily grazed short-grass vegetation increased with increasing soil-P pool, suggesting that red deer preferably grazed on grid cells with a higher soil-P pool. Biomass consumption related to increased proportion of short-grass vegetation, and therefore P removal, increased with increasing soil-P pool. However, within the two vegetation types (short-grass and tall-grass), consumption was independent from soil-P pool. In addition, P input rates from defecation increased with increasing soil-P pool, resulting in a constant mean net P loss of 0.083 kg ha−1 y−1 (0.03%–0.07% of soil-P pool) independent of both soil-P pool and vegetation type. Thus, there was no P translocation between grid cells with different soil-P pools or between short-grass and tall-grass vegetation. Based on these results, it is likely that the net rate of P loss is too small to explain the observed changes in vegetation composition from tall-herb/meadow communities to short-grass and from tall-grass to short-grass on the grassland since 1917. Instead, we suggest that the grazing patterns of red deer directly induced succession from tall-herb/meadow communities to short-grass vegetation. Yet, it is also possible that long-term net soil-P losses indirectly drive plant succession from short-grass to tall-grass vegetation, because nutrient depletion could reduce grazing pressure in short-grass vegetation and enable the characteristic tall-grass species Carex sempervirens Vill. to establish.  相似文献   

6.
Ground vegetation may act as a sink for nutrients after clear-cutting and thus decrease leaching losses. Biomass and nutrient (N, P, K, Ca) pools of ground vegetation (mosses, roots and above-ground parts of field layer) were determined one year before and five years after clear-cutting of a Norway spruce (Picea abies (L.) H. Karst.) dominated boreal mixed forest stand in eastern Finland (63°51′ N, 28°58′ E). Before clear-cutting the average biomass of ground vegetation was 5307 kg ha−1, with nutrient contents of 46.9 kg N ha−11, 4.1 kg P ha−11, 16.2 kg K ha−11 and 13.9 kg Ca ha−11. The biomass and nutrient pools decreased after clear-cutting being lowest in the second year, the biomass decreasing by 46–65% in the cut plots. The nutrient pools decreased as follows: N 54–72%, P 36–68%, K 51–71% and Ca 57–74%. The decrease in ground vegetation nutrient uptake, and the observed reduced depth of rooting may decrease nutrient retention after clear-cutting and decomposing dead ground vegetation is a potential source of leached nutrients. These negative effects of clear-cutting on the nutrient binding capacity of ground vegetation was short-lived since the total biomass and nutrient pools returned to pre-cutting levels or were even greater by the end of the 5-year study period.  相似文献   

7.
Browsing by livestock has been identified as an important factor preventing tree regeneration in wooded pastures. Two field experiments were performed to investigate the effects of cattle browsing on tree sapling growth in a mountain-wooded pasture. Two size classes (ca. 12–17 cm and 41–59 cm) of each of 4 species (Picea abies, Abies alba, Acer pseudoplatanus and Fagus sylvatica) were exposed to zero, low and high grazing intensities. We measured the proportion of saplings browsed and the effect of browsing on growth. A mowing treatment within the zero grazing intensity treatment showed no significant effect on sapling growth. One percent of the large saplings but 25% of the small saplings escaped browsing. Saplings were better protected when surrounded by taller vegetation. The proportion of saplings browsed was not significantly different among species although evergreen tree saplings lost a larger proportion of biomass than deciduous species when browsed. Under grazing, average current-year shoot production and total aboveground biomass of all species were significantly reduced. Browsing effects tended to be smaller at the lower grazing intensity. Because the deciduous species were least reduced in aboveground growth, especially under the low grazing intensity, we conclude that at least in short-term, deciduous species are less affected by cattle browsing.  相似文献   

8.
9.
This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI–biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r 2=0.59); (2) NDVI–biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.  相似文献   

10.
11.
鄱阳湖湿地灰化苔草生长季氮磷含量与储量的变化   总被引:1,自引:0,他引:1  
白秀玲  周云凯  王杰华  李文丽 《生态学报》2018,38(13):4752-4760
湿地植物在营养元素生物地球化学循环过程中起着重要作用,研究植物氮磷元素的吸收、分配和积累特征对于正确理解氮磷循环关键过程及其生态作用具有重要意义。基于野外实地观测和室内实验分析,研究了鄱阳湖淡水湿地灰化苔草春草生长季内不同部位生物量、氮磷含量及氮磷储量的动态变化。结果表明:在生长季内,灰化苔草各部位生物量随时间推移而增加,地上部分生物量在各生长期均高于地下部分,地下部分生物量积累速率相对稳定,而地上部分和总体平均积累速率表现为生长前期高于生长后期;各部位氮磷含量经历了先减少再增加的变化过程,其中地上部分氮元素在灰化苔草生长的中后期显著高于地下部分,而磷元素在中前期两者差异更为显著;生物量与氮磷储量均呈显著正相关,是灰化苔草氮磷储量动态变化的主导因子,氮磷元素主要储存在灰化苔草的地上部分;研究期间灰化苔草平均氮磷比介于3.32—3.83之间,按营养限制理论进行判断,氮元素可能是灰化苔草生长的限制性营养因子。  相似文献   

12.
The capacity of Mediterranean species to adapt to variable nutrient supply levels in a global change context can be a key factor to predict their future capacity to compete and survive in this new scenario. We aimed to investigate the capacity of a typical Mediterranean tree species, Pinus halepensis, to respond to sudden changes in N and P supply in different environmental conditions. We conducted a fertilisation, irrigation and removal of competing vegetation experiment in a calcareous post-fire shrubland with an homogeneous young (5 years old) population of P. halepensis in order to investigate the retranslocation and nutrient status for the principal nutrients (N, P, Mg, K, S, Ca and Fe), and the nutrient use efficiency (NUE) of the most important nutrients linked to photosynthetic capacity (N, P, Mg and K). P fertilisation increased P concentration in needles, P, N, Mg and K retranslocations, and NUE calculated as biomass production per unit of nutrient lost in the litterfall. The P fertilisation was able to increase the aboveground biomasses and P concentration 3 years after P fertiliser application. Those responses to P fertilisation were enhanced by the removal of competing vegetation. The N needle and litterfall concentration decreased after P fertilisation and this effect was greater when the P fertilisation was accompanied by removal of competing vegetation. The increase of P availability decreased the P-NUE and increased the N-NUE when these variables were calculated as aboveground biomass production per unit of P present in the biomass. Both P-NUE and N-NUE increased when calculated as total aboveground production per unit of nutrient loss. The results show that it is necessary to calculate NUE on a different basis to have a wider understanding of nutrient use. The irrigation did not change the needle nutrient concentrations and the litterfall production, but it significantly changed the nutrient litterfall concentrations and total aboveground contents (especially P and K). These results show a high capacity of P. halepensis to quickly respond to a limiting nutrient such as P in the critical phases of post-fire regeneration. The increase in P availability had a positive effect on growth and P concentrations and contents in aboveground biomass, thus increasing the capacity of growth in future periods and avoiding immediate runoff losses and leachate. This capacity also strongly depends on neighbour competition.  相似文献   

13.
湿地是大气甲烷(CH_4)的主要排放源,而有关放牧对湿地CH_4排放的影响特征仍未得到足够的报道。因此,通过静态箱法,研究了放牧对四川省若尔盖高原湿地CH_4排放的影响,CH_4气体通过快速温室气体分析仪测量。结果表明:放牧样地和围栏内样地生长季CH_4排放量为(31.32±19.57)g/m~2和(30.31±23.46)g/m~2,它们之间无差异显著;但是集中放牧期间(7—9月),放牧样地(21.01±12.35)g/m~2较围栏内样地显著增加了CH_4排放量为54.3%。2014年生长季期间通过刈割植物模拟放牧表明两种刈割强度CH_4排放量为(5.01±5.37)g/m~2和(4.69±5.99)g/m~2,较未刈割样地(1.15±1.89)g/m~2增加了335.9%和308.0%,其原因可能是放牧或者刈割减少地表植物生物量,降低植物高度,缩短了CH_4排放的路径距离。该结果可为我国高原湿地保护与管理决策提供基础数据支撑。  相似文献   

14.
Gao YZ  Chen Q  Lin S  Giese M  Brueck H 《Oecologia》2011,165(4):855-864
Productivity of semiarid grasslands is affected by soil water and nutrient availability, with water controlling net primary production under dry conditions and soil nutrients constraining biomass production under wet conditions. In order to investigate limitations on plants by the response of root–shoot biomass allocation to water and nitrogen (N) availability, a field experiment, on restoration plots with rainfed, unfertilized control plots, fertilized plots receiving N (25 kg urea-N ha−1) and water (irrigation simulating a wet season), was conducted at two sites with different grazing histories: moderate (MG) and heavy (HG) grazing. Irrigation and N addition had no effect on belowground biomass. Irrigation increased aboveground (ANPP) and belowground net primary production (BNPP) and rain-use efficiency based on ANPP (RUEANPP), whereas N addition on rainfed plots had no effect on any of the measured parameters. N fertilizer application on irrigated plots increased ANPP and RUEANPP and reduced the root fraction (RF: root dry matter/total dry matter), resulting in smaller N effects on total net primary production (NPP) and rain-use efficiency based on NPP. This suggests that BNPP should be included in evaluating ecosystem responses to resource availability from the whole-plant perspective. N effects on all measured parameters were similar on both sites. However, site HG responded to irrigation with higher ANPP and a lower RF when compared to site MG, indicating that species composition had a pronounced effect on carbon allocation pattern due to below- and aboveground niche complementarity.  相似文献   

15.
Changes in grazing management are believed to be responsible for declines in populations of birds breeding in grassland over the last decades. The relationships between grazing management regimes, vegetation structure and composition and the availability of invertebrate food resources to passerine birds remain poorly understood. In this study, we investigated the foraging site selection of meadow pipits (Anthus pratensis L.) breeding in high intensity sheep-grazed plots or low intensity mixed (i.e. sheep and cattle)-grazed plots. We sampled above-ground invertebrates, measured vegetation height and density and conducted a vegetation survey in areas where meadow pipits were observed to forage and areas that were randomly selected. Birds foraged in areas with a lower vegetation height and density and in areas containing a lower proportion of the dominant, tussock-forming grass species Molinia caerulea. They did not forage in areas with a total higher invertebrate biomass but at areas with preferred vegetation characteristics invertebrate biomass tended to be higher in foraging sites than random sites. The foraging distance of meadow pipits was higher in the intensively grazed plots. Our findings support the hypothesis that resource-independent factors such as food accessibility and forager mobility may determine patch selection and are of more importance as selection criteria than food abundance per se. Food accessibility seems to become an even more important selection criterion under high grazing intensity, where prey abundance and size decrease. In our upland grazing system, a low intensity, mixed grazing regime seems to provide a more suitable combination of sward height, plant diversity, structural heterogeneity and food supply for meadow pipit foraging activity compared to a more intensive grazing regime dominated by sheep.  相似文献   

16.
It is generally known that the water quality of shallow lakes can be influenced significantly by marginal wetlands. In order to study the efficacy of constructed littoral wetlands in the IJsselmeer area (The Netherlands) for water quality improvement, a field survey was carried out in 2003. Vegetation, soil, pore water and surface water characteristics were measured in spring and summer in two types of littoral zones: natural and constructed for 8–16 years. The study showed that constructed wetlands perform well and are suitable to enlarge the vegetated littoral zone in the IJsselmeer area. In both natural and constructed sites vegetation biomass varied between 2,200 g m−2 for helophyte vegetation and 1,300 g m−2 for low herbaceous vegetation. Nutrient concentrations in the pore water of constructed sites tended to be higher than in natural sites. and concentrations in pore water were much lower when vegetation was present, probably as a result of plant uptake. The N and P accumulation rate in the soil of constructed wetlands was 20 g N m−2 y−1 and 3 g P m−2 y−1 in vegetated plots; without vegetation the rate was much lower (8 g N m−2 y−1 and 1.8 g P m−2 y−1). We conclude that concerning their effect on water quality, constructed sites may replace natural sites, at least after 8–16 years. Principal component analysis showed a relationship between vegetation biomass and flooding, and nutrient concentrations in soil and pore water. Biomass was negatively correlated with extractable nutrients and positively with soil total N and P content. Flooding duration was negatively related to pore water salinity and positively to pore water nutrients. Due to their high biomass, helophyte stands retained significantly more nutrients than low pioneer vegetation and are therefore more suitable for improving water quality. Handling editor: S. Declerck  相似文献   

17.
There is growing evidence from different sources that prolonged high N deposition causes a shift from nitrogen (N) limitation to nitrogen and phosphorus (P) co-limitation or even P limitation in many terrestrial ecosystems. However, the number of ecosystems where the type of limitation has been directly tested by longer-term full-factorial field experiments is very limited. We conducted a 5-year fertilization experiment with N and P in the Lüneburger Heide (NW Germany) to test the hypothesis that, following decades of elevated atmospheric N inputs, plant growth in dry lowland heaths may have shifted from N to N–P co-limitation or P limitation. We also tested whether the plant tissue N:P ratio reflects the type of nutrient limitation in a continental lowland heathland. Experimental plots dominated by Calluna vulgaris received regular additions of N (50 kg N ha−1 y−1), P (20 kg P ha−1 y−1), a combination of both, or water only (control) from 2004 to 2008. Over the whole study period, a highly significant positive N effect on shoot length was found, thus indicating N limitation. We conclude that a clear shift from N limitation to N–P co-limitation or P limitation has not yet occurred. Tissue N:P ratios showed a high temporal variability and no relationship between tissue N:P ratio and the shoot length response of Calluna to nutrient addition was found. The N:P tool is thus of limited use at the local scale and within the range of N:P ratio observed in this study, and should only be used as a rough indicator for the prediction of the type of nutrient limitation in lowland heathland on a larger geographical scale with a broader interval of N:P ratio.  相似文献   

18.
R. Aerts  H. de Caluwe  B. Beltman 《Oikos》2003,101(3):489-498
Correlative studies have shown a ‘hump‐backed’ relation between the vegetation N:P ratio and plant species diversity with the highest diversity at balanced N:P ratios (between 10 and 14). We tested the hypothesis that adding growth‐limiting nutrients to mesotrophic grasslands that were in shortage of either N (N:P ratio<10) or P (N:P ratio>14) would lead to an increase of plant diversity. Thereto, we studied the effects of long‐term (11 yr) experimentally increased N and/or P supply on soil nutrient pools, vegetation nutrient dynamics and biodiversity in a riverine grassland in the Netherlands with a low soil N:P ratio (N shortage) and a peat grassland with a high soil N:P ratio (P shortage), respectively. Eleven years of nutrient addition hardly had any effects on the total stocks of C, N and P in the soils of both sites, due to the large size of the soil nutrient pools already present and to the management at both sites (annual hay‐making and ‐removal). However, in the riverine grassland the treatments increased the cycling of the small pool of labile N and P compounds resulting in large increases in annual fluxes of especially N. In the unfertilised controls, species establishments balanced more or less species losses during an 11 year period, thus leading to a dynamic equilibrium of the species pool. However, contrary to our hypothesis, addition of the growth‐limiting nutrient led at both sites to a reduction of species diversity even when total biomass remained below critical levels. Species diversity and species evenness were strongly determined by N mineralisation and to a lesser extent by total soil N and extractable P, respectively. Total aboveground biomass of the vegetation was determined by total soil N. Our study shows that patterns found in correlative studies of the relation between plant diversity and soil and vegetation N:P ratio can not be translated into successful experimental manipulations to enhance biodiversity. The most likely explanation is that colonization limitation occurred in the fertilized plots and that not sufficient diaspores of potentially new species could reach and/or colonize the plots to compensate for the species extinctions as a result of increased nutrient supply.  相似文献   

19.
*Assessing plant nutrient limitation is a fundamental part of understanding grassland dynamics. The ratio of concentrations of nitrogen (N) and phosphorus (P) in vegetation has been proposed as an index of the relative limitation of biomass production by N and P, but its utility has not been tested well in grasslands. *At five sites in Kruger National Park, South Africa, across soil and precipitation contrasts, N and P were added in a factorial design to grass-dominated plots. *Although the N:P ratio of unfertilized vegetation across all sites (5.8) would have indicated that production was N-limited, aboveground production was consistently co-limited by N and P. Aboveground production was still greater in plots fertilized with N and P than in those fertilized with just N, but the N:P ratio did not exceed standard thresholds for P limitation in N-fertilized vegetation. Comparisons among sites showed little pattern between site N:P ratio and relative responses to N and P. *When combined with results from other grassland fertilization studies, these data suggest that the N:P ratio of grasses has little ability to predict limitation in upland grasslands. Co-limitation between N and P appears to be much more widespread than would be predicted from simple assumptions of vegetative N:P ratios.  相似文献   

20.
Paoli GD  Curran LM  Slik JW 《Oecologia》2008,155(2):287-299
Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8–196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees ≥10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0–20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 ± 13 stems ha−1, basal area 39.6 ± 1.4 m2 ha−1 and aboveground biomass 518 ± 28 Mg ha−1 (mean ± SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 ± 25 Mg ha−1. Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R Pearson = 0.368–0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60–90 cm dbh were negatively related to these factors. Soil fertility thus had a significant effect on both total aboveground biomass and its distribution among size classes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号