共查询到20条相似文献,搜索用时 0 毫秒
1.
Morelli A Chiozzi P Chiesa A Ferrari D Sanz JM Falzoni S Pinton P Rizzuto R Olson MF Di Virgilio F 《Molecular biology of the cell》2003,14(7):2655-2664
The P2X7 ATP receptor mediates the cytotoxic effect of extracellular ATP. P2X7-dependent cell death is heralded by dramatic plasma membrane bleb formation. Membrane blebbing is a complex phenomenon involving as yet poorly characterized intracellular pathways. We have investigated the effect of extracellular ATP on HEK293 cells transfected with the cytotoxic/pore-forming P2X7 receptor. Addition of ATP to P2X7-transfected, but not to wt P2X7-less, HEK293 cells caused massive membrane blebbing within 1-2 min. UTP, a nucleotide incapable of activating P2X7, had no early effects on cell shape and bleb formation. Bleb formation triggered by ATP was reversible and required extracellular Ca2+ and an intact cytoskeleton. Furthermore, it was completely prevented by preincubation with the P2X blocker oxidized ATP. It was recently observed that the ROCK protein is a key determinant of bleb formation. Preincubation of HEK293-P2X7 cells with the ROCK blocker Y-27632 completely prevented P2X7-dependent blebbing. Although ATP triggered cleavage of the ROCK I isoform in P2X7-transfected HEK293 cells, the wide range caspase inhibitor z-VAD-fluoromethylketone had no effect. These observations suggest that P2X7-dependent plasma membrane blebbing depends on the activation of the serine/threonine kinase ROCK I. 相似文献
2.
Islam S Hassan F Tumurkhuu G Dagvadorj J Koide N Naiki Y Mori I Yoshida T Yokochi T 《Biochemical and biophysical research communications》2007,360(2):346-351
Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-alpha antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). TNF-alpha might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-kappaB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed. 相似文献
3.
Yilmaz O Yao L Maeda K Rose TM Lewis EL Duman M Lamont RJ Ojcius DM 《Cellular microbiology》2008,10(4):863-875
The purinergic receptor P2X7 is involved in cell death, inhibition of intracellular infection and secretion of inflammatory cytokines. The role of the P2X7 receptor in bacterial infection has been primarily established in macrophages. Here we show that primary gingival epithelial cells, an important component of the oral innate immune response, also express functional P2X7 and are sensitive to ATP-induced apoptosis. Porphyromonas gingivalis, an intracellular bacterium and successful colonizer of oral tissues, can inhibit gingival epithelial cell apoptosis induced by ATP ligation of P2X7 receptors. A P. gingivalis homologue of nucleoside diphosphate kinase (NDK), an ATP-consuming enzyme, is secreted extracellularly and is required for maximal suppression of apoptosis. An ndk -deficient mutant was unable to prevent ATP-induced host-cell death nor plasma membrane permeabilization in the epithelial cells. Treatment with purified recombinant NDK inhibited ATP-mediated host-cell plasma membrane permeabilization in a dose-dependent manner. Therefore, NDK promotes survival of host cells by hydrolysing extracellular ATP and preventing apoptosis-mediated through P2X7 . 相似文献
4.
Gutiérrez-Martín Y Bustillo D Gómez-Villafuertes R Sánchez-Nogueiro J Torregrosa-Hetland C Binz T Gutiérrez LM Miras-Portugal MT Artalejo AR 《The Journal of biological chemistry》2011,286(13):11370-11381
Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation. 相似文献
5.
Extracellular ATP inhibits starvation-induced apoptosis via P2X2 receptors in differentiated rat pheochromocytoma PC12 cells 总被引:3,自引:0,他引:3
Apoptosis in neuronal tissue is an efficient mechanism which contributes to both normal cell development and pathological cell death. The present study explored the effects of extracellular ATP on starvation-induced apoptosis in rat pheochromocytoma PC12 cells. Incubation of differentiated PC12 cells with ATP for 6h suppressed apoptosis. 2-Methylthio-ATP, a P2 purinoceptor agonist, was as potent as ATP in suppressing apoptosis, whereas adenosine, ADP, alpha,betamethylene-ATP or UTP was totally ineffective. The suppressive action of ATP was dependent upon the presence of extracellular Ca2+ and blocked by co-incubation with the P2 antagonist, suramin. DNA ladder formation, a typical symptom of apoptosis in starved cells, was inhibited by ATP, 2-methylthio-ATP but not by UTP. These results suggest that the inhibitory action of extracellular ATP on apoptotic cell death is mediated via the activation of P2X2 receptors in differentiated PC12 cells. 相似文献
6.
Purinergic Signalling - 相似文献
7.
8.
Mistafa O Högberg J Stenius U 《Biochemical and biophysical research communications》2008,365(1):131-136
Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells. 相似文献
9.
Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells 总被引:5,自引:0,他引:5
Bulanova E Budagian V Orinska Z Hein M Petersen F Thon L Adam D Bulfone-Paus S 《Journal of immunology (Baltimore, Md. : 1950)》2005,174(7):3880-3890
Extracellular ATP and other nucleotides act through specific cell surface receptors and regulate a wide variety of cellular responses in many cell types and tissues. In this study, we demonstrate that murine mast cells express several P2Y and P2X receptor subtypes including P2X(7), and describe functional responses of these cells to extracellular ATP. Stimulation of bone marrow-derived mast cells (BMMC), as well as MC/9 and P815 mast cell lines with millimolar concentrations of ATP, resulted in Ca(2+) influx across the cellular membrane and cell permeabilization. Moreover, brief exposures to ATP were sufficient to induce apoptosis in BMMCs, MC/9, and P815 cells which involved activation of caspase-3 and -8. However, in the time period between commitment to apoptosis and actual cell death, ATP triggered rapid but transient phosphorylation of multiple signaling molecules in BMMCs and MC/9 cells, including ERK, Jak2, and STAT6. In addition, ATP stimulation enhanced the expression of several proinflammatory cytokines, such as IL-4, IL-6, IL-13, and TNF-alpha. The effects of ATP were mimicked by submillimolar concentrations of 3-O-(4'-benzoyl)-benzoyl-benzoyl-ATP, and were inhibited by pretreatment of mast cells with a selective blocker of human and mouse P2X(7) receptor, 1[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine, as well as oxidized ATP. The nucleotide selectivity and pharmacological profile data support the role for P2X(7) receptor as the mediator of the ATP-induced responses. Given the importance of mast cells in diverse pathological conditions, the ability of extracellular ATP to induce the P2X(7)-mediated apoptosis in these cells may facilitate the development of new strategies to modulate mast cell activities. 相似文献
10.
Johnsen Bjarne Kaschubowski Klaus Eric Nader Sorush Schneider Enja Nicola Jan-Andrei Fliegert Ralf Wolf Insa M. A. Guse Andreas H. Nikolaev Viacheslav O. Koch-Nolte Friedrich Haag Friedrich 《Purinergic signalling》2019,15(2):155-166
Purinergic Signalling - ATP and its metabolites are important extracellular signal transmitters acting on purinergic P2 and P1 receptors. Most cells can actively secrete ATP in response to a... 相似文献
11.
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-l-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca2+ and Mg2+ and almost completely in cells in N-methyl-d-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-l-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells. 相似文献
12.
Falzoni S Chiozzi P Ferrari D Buell G Di Virgilio F 《Molecular biology of the cell》2000,11(9):3169-3176
Cell fusion is a central phenomenon during the immune response that leads to formation of large elements called multinucleated giant cells (MGCs) of common occurrence at sites of granulomatous inflammation. We have previously reported on the involvement in this event of a novel receptor expressed to high level by mononuclear phagocytes, the purinergic P2X(7) receptor. Herein, we show that blockade of this receptor by a specific monoclonal antibody prevents fusion in vitro. In contrast, cell fusion is stimulated by addition of enzymes that destroy extracellular ATP (i.e., apyrase or hexokinase). Experiments performed with phagocytes selected for high (P2X(7) hyper) or low (P2X(7) hypo) P2X(7) expression show that fusion only occurs between P2X(7) hyper/P2X(7) hyper and not between P2X(7) hyper/P2X(7) hypo or P2X(7) hypo/P2X(7) hypo. During MGCs formation we detected activation of caspase 3, an enzyme that is powerfully stimulated by P2X(7). Finally, we observed that during MGCs formation, the P2X(7) receptor is preferentially localized at sites of cell-to-cell contact. These findings support the hypothesis originally put forward by our group that the P2X(7) receptor participates in multinucleated giant cell formation. 相似文献
13.
14.
Cells of the mononuclear phagocyte lineage fuse to form multinucleated giant cells and osteoclasts. Several lines of evidence
suggest that P2 receptors, in particular P2X7, are involved in this process, although P2X7 is not absolutely required for fusion because P2X7-null mice form multinucleated osteoclasts. Extracellular ATP may be an important regulator of macrophage fusion. 相似文献
15.
Somatic and axonal effects of ATP via P2X2 but not P2X7 receptors in rat thoracolumbar sympathetic neurones 总被引:2,自引:0,他引:2
Allgaier C Reinhardt R Schädlich H Rubini P Bauer S Reichenbach A Illes P 《Journal of neurochemistry》2004,90(2):359-367
Excitatory ATP responses in rat cultured thoracolumbar sympathetic neurones are mediated by somatic P2X(2) receptors. The present study investigated a possible role of axonal P2X(2) as well as P2X(7) receptors on the same preparation. Confocal laser scanning microscopy demonstrated P2X(2) and P2X(7) immunoreactivity along the axons as well as P2X(7) immunoreactivity surrounding the cell nuclei. P2X(7) mRNA expression was detected in individual neurones using a single-cell RT-PCR approach. Adenosine triphosphate (ATP) caused a significant increase in axonal Ca(2+) concentration which was dependent on external Ca(2+) but insensitive to depletion of the cellular Ca(2+) pools by cyclopiazonic acid. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 micro m) virtually abolished the ATP response, whereas brilliant blue G (0.1 micro m), a selective P2X(7) receptor antagonist, had no effect. Dibenzoyl-ATP (BzATP; 100 micro m) induced a much smaller increase in axonal [Ca(2+)] concentration than ATP at equimolar concentrations. The response to BzATP was distinctly reduced by PPADS but not by brilliant blue G. The overall pharmacological profile of the axonal P2X receptors resembled closely that of the somatic P2X(2) receptors. In conclusion, the present data suggest the occurrence of axonal excitatory P2X(2) receptors in thoracolumbar sympathetic neurones. However, the functional significance of axonal and (peri)-nuclear P2X(7) receptors has still to be proven. 相似文献
16.
17.
Anna Wilkaniec Magdalena Gąssowska Grzegorz A. Czapski Magdalena Cieślik Grzegorz Sulkowski Agata Adamczyk 《Purinergic signalling》2017,13(3):347-361
Abnormalities of alpha-synuclein (ASN), the main component of protein deposits (Lewy bodies), were observed in Parkinson’s disease (PD), dementia with Lewy bodies, Alzheimer’s disease, and other neurodegenerative disorders. These alterations include increase in the levels of soluble ASN oligomers in the extracellular space. Numerous works have identified several mechanisms of their toxicity, including stimulation of the microglial P2X7 receptor leading to oxidative stress. While the significant role of purinergic signaling—particularly, P2 family receptors—in neurodegenerative disorders is well known, the interaction of extracellular soluble ASN with neuronal purinergic receptors is yet to be studied. Therefore, in this study, we have investigated the effect of ASN on P2 purinergic receptors and ATP-dependent signaling. We used neuroblastoma SH-SY5Y cell line and rat synaptoneurosomes treated with exogenous soluble ASN. The experiments were performed using spectrofluorometric, radiochemical, and immunochemical methods. We found the following: (i) ASN-induced intracellular free calcium mobilization in neuronal cells and nerve endings depends on the activation of purinergic P2X7 receptors; (ii) activation of P2X7 receptors leads to pannexin 1 recruitment to form an active complex responsible for ATP release; and (iii) ASN greatly decreases the activity of extracellular ecto-ATPase responsible for ATP degradation. Thus, it is concluded that purinergic receptors might be putative pharmacological targets in the molecular mechanism of extracellular ASN toxicity. Interference with P2X7 signaling seems to be a promising strategy for the prevention or therapy of PD and other neurodegenerative disorders. 相似文献
18.
Increased proliferation rate of lymphoid cells transfected with the P2X(7) ATP receptor 总被引:6,自引:0,他引:6
Baricordi OR Melchiorri L Adinolfi E Falzoni S Chiozzi P Buell G Di Virgilio F 《The Journal of biological chemistry》1999,274(47):33206-33208
Human leukocytes can express the P2X(7) purinergic receptor, an ionic channel gated by extracellular ATP, for which the physiological role is only partially understood. Transfection of P2X(7) cDNA into lymphoid cells that lack this receptor sustains their proliferation in serum-free medium. Increased proliferation of serum-starved P2X(7) transfectants is abolished by the P2X(7) receptor blocker oxidized ATP or by the ATP hydrolase apyrase. Both wild type and P2X(7)-transfected lymphoid cells release large amounts of ATP into the culture medium. These data suggest the operation of an ATP-based autocrine/paracrine loop that supports lymphoid cell growth in the absence of serum-derived growth factors. 相似文献
19.
Lemaire I Falzoni S Leduc N Zhang B Pellegatti P Adinolfi E Chiozzi P Di Virgilio F 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(10):7257-7265
Multinucleated giant cells (MGC), a hallmark of chronic inflammatory reactions, remain an enigma of cell biology. There is evidence implicating the purinergic P2X7 receptor in the fusion process leading to MGC. To investigate this, we used HEK 293 cells stably transfected with either 1) the full-length rat P2X7 receptor (P2X7 cells), 2) a rat P2X7 receptor lacking the C-terminal domain (P2X7TC), or 3) a mock vector, and rat alveolar macrophages (MA) expressing the native receptor. P2X7 cells cultured in serum-free medium formed increased numbers of MGC and displayed a higher fusion index compared with mock transfectants. Stimulation of P2X7 pore-forming activity in P2X7 cells by polymyxin B (PMB) further increased significantly the formation of MGC. Conversely, blockers of P2X-receptors including oxidized ATP, brilliant blue G, and pyridoxal phosphate-6-azophenyl-2'-4'-disulfonic acid inhibited significantly MGC formation in both unstimulated and PMB-stimulated P2X7-transfected cells. In contrast, cells transfected with the truncated P2X7TC were devoid of pore-forming activity, did not respond to PMB stimulation, and failed to form enhanced numbers of MGC, thus behaving as mock transfectants. As found for P2X7-transfected cells, PMB also potentiated dose-dependently the formation of multinucleated MA by rat alveolar MA. Pretreatment with oxidized ATP abrogated the PMB stimulatory effects. Together, these data demonstrate unequivocally the participation of P2X7 receptor in the process of MGC formation. Our study also provides evidence suggesting that stimulation of the P2X7 receptor pathway in MA may mediate increased formation of MGC during chronic inflammatory reactions. 相似文献
20.
S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8 expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells and in osteoclast formation. 相似文献