首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-step most-probable-number method for enumerating fecal coliforms in sewage treatment plant effluents is described. The method requires the use of only one lactose-based medium and a single incubation temperature of 44.5 degrees C, and it can be completed in 18 h or less, as compared with up to 72 h for the standard most-probable-number method. The appearance of growth is the sole criterion used for designating positives, which can be determined either by increases in the electrical impedance ratio of inoculated medium, as compared to an uninoculated control using a Bactometer model 32, or by visual examination of inoculated medium for turbidity. In trials with 53 samples of unchlorinated sewage treatment plant effluent, fecal coliform counts by the single-step most-probable-number method, throughout a range of less than 10 to almost 10(7) fecal coliforms per 100 ml of effluent, were in excellent agreement with counts abtained by the standard most-probable-number procedure. Similar agreement was obtained in comparative trials with 31 chlorinated effluent samples from two sewage treatment plants. Overall, 87% of 452 positives were confirmed as containing fecal coliforms. The applicability of the single-step most-probable-number method to automated sewage treatment plant operations is discussed.  相似文献   

2.
The standard one-step M-FC broth-membrane-filter procedure for recovery of fecal coliforms from chlorinated sewage effluents is much less effective than the multiple-tube (most-probable-number) technique. A two-step membrane-filter method, using a pre-enrichment technique with phenol red lactose broth and incubation at 35 degrees C for 4 h, followether 18+/-2 h, enhanced fecal coliform recovery from chlorinated effluents. The results of 126 comparisons using chlorinated effluents from five wastewater plants showed that fecal coliform recovery by using the two-step membrane-filter method is comparable to that using the multiple-tube procedure.  相似文献   

3.
A single-step most-probable-number method for enumerating fecal coliforms in sewage treatment plant effluents is described. The method requires the use of only one lactose-based medium and a single incubation temperature of 44.5 degrees C, and it can be completed in 18 h or less, as compared with up to 72 h for the standard most-probable-number method. The appearance of growth is the sole criterion used for designating positives, which can be determined either by increases in the electrical impedance ratio of inoculated medium, as compared to an uninoculated control using a Bactometer model 32, or by visual examination of inoculated medium for turbidity. In trials with 53 samples of unchlorinated sewage treatment plant effluent, fecal coliform counts by the single-step most-probable-number method, throughout a range of less than 10 to almost 10(7) fecal coliforms per 100 ml of effluent, were in excellent agreement with counts abtained by the standard most-probable-number procedure. Similar agreement was obtained in comparative trials with 31 chlorinated effluent samples from two sewage treatment plants. Overall, 87% of 452 positives were confirmed as containing fecal coliforms. The applicability of the single-step most-probable-number method to automated sewage treatment plant operations is discussed.  相似文献   

4.
A 24-h most-probable-number technique using A-1 medium for detecting fecal coliforms in chlorinated wastewaters was evaluated. The A-1 medium technique, using 3 h of preincubation at 35 degrees C, gave results statistically equivalent to those obtained with the American Public Health Association Standard Methods two-step most-probable-number technique.  相似文献   

5.
Reports indicate that the standard membrane filter (MF) technique for recovery of fecal coliform bacteria from chlorinated sewage effluents is less effective than the multiple-tube (or most-probable-number [MPN]) procedure. A modified MF method was developed that requires a preincubation period of 5 h at 35 degrees C followed by 18+/-1 h at 44.5 degrees C. This procedure was evaluated by using both laboratory- and plant-chlorinated primary and secondary effluents. Results obtained by the modified MF method compared favorably with those of the MPN technique for the enumeration of fecal coliforms from chlorinated effluent. Agreement between these two methods was greatest with samples from secondary treatment plants. The average recovery of fecal coliforms by the standard MF procedure was only 14% that of the MPN method, whereas with the modified technique recovery was increased to 68% of the MPN counts. Enhanced recovery resulting from a simple modification in the incubation schedule makes the MF method a valuable adjunct for enumerating fecal coliforms from chlorinated effluents.  相似文献   

6.
Reports indicate that the standard membrane filter (MF) technique for recovery of fecal coliform bacteria from chlorinated sewage effluents is less effective than the multiple-tube (or most-probable-number [MPN]) procedure. A modified MF method was developed that requires a preincubation period of 5 h at 35 degrees C followed by 18+/-1 h at 44.5 degrees C. This procedure was evaluated by using both laboratory- and plant-chlorinated primary and secondary effluents. Results obtained by the modified MF method compared favorably with those of the MPN technique for the enumeration of fecal coliforms from chlorinated effluent. Agreement between these two methods was greatest with samples from secondary treatment plants. The average recovery of fecal coliforms by the standard MF procedure was only 14% that of the MPN method, whereas with the modified technique recovery was increased to 68% of the MPN counts. Enhanced recovery resulting from a simple modification in the incubation schedule makes the MF method a valuable adjunct for enumerating fecal coliforms from chlorinated effluents.  相似文献   

7.
A 1-year study of marine water sample from six beach locations showed that the most-probable-number method failed to recover significant numbers of coli-forms. Modifying this method by transferring, after 48 h, presumptive negatives (growth and no gas production) to confirmed and fecal coliform media significantly improved recovery. Tests which were presumptive negative but confirmed as fecal coliform positive were designated as false negatives. Most-probable-number method false negatives occurred throughout the year, with 143 of 270 samples collected producing false negatives. More than 50% of fecal coliform false-negative isolates were Escherichia coli. Inclusion of false-negative tubes into the coliform most-probable-number method data resulted in increased violation of the California ocean water contact sports standard at all sites. More than 20% of the samples collected were in violation of this standard. These data indicate that modification of the most-probable-number method increases detection of coliform numbers in the marine environment.  相似文献   

8.
A 1-year study of marine water sample from six beach locations showed that the most-probable-number method failed to recover significant numbers of coli-forms. Modifying this method by transferring, after 48 h, presumptive negatives (growth and no gas production) to confirmed and fecal coliform media significantly improved recovery. Tests which were presumptive negative but confirmed as fecal coliform positive were designated as false negatives. Most-probable-number method false negatives occurred throughout the year, with 143 of 270 samples collected producing false negatives. More than 50% of fecal coliform false-negative isolates were Escherichia coli. Inclusion of false-negative tubes into the coliform most-probable-number method data resulted in increased violation of the California ocean water contact sports standard at all sites. More than 20% of the samples collected were in violation of this standard. These data indicate that modification of the most-probable-number method increases detection of coliform numbers in the marine environment.  相似文献   

9.
The 7-h fecal coliform (FC) test for detection of FC organisms in water was evaluated to establish its validity and usefulness for emergency and disaster situations. The waters tested consisted of routine samples collected for public health surveillance and enforcement purposes. A total of 984 water samples from throughout California were assayed. These included samples from coastal salt waters, rivers, canals, and reservoirs, in addition to potable and miscellaneous freshwater sources. A portion of each sample was tested concurrently by both the 7-h FC test and the most-probable-number FC five-tube test. The 7-h FC test samples were incubated for 7 to 7.25 h at 41.5 degrees C. Overall, greater than 90% agreement was obtained between the methods in determining whether the water quality was acceptable or unacceptable. Statistical analysis of the 984 samples confirmed that the 7-h FC method was a suitable alternative to the most-probable-number FC method for evaluation of freshwater samples. During emergencies or disasters, the 7-h FC test could provide a means for detection of fecal contamination of water with results available in less than 1 day.  相似文献   

10.
The 7-h fecal coliform (FC) test for detection of FC organisms in water was evaluated to establish its validity and usefulness for emergency and disaster situations. The waters tested consisted of routine samples collected for public health surveillance and enforcement purposes. A total of 984 water samples from throughout California were assayed. These included samples from coastal salt waters, rivers, canals, and reservoirs, in addition to potable and miscellaneous freshwater sources. A portion of each sample was tested concurrently by both the 7-h FC test and the most-probable-number FC five-tube test. The 7-h FC test samples were incubated for 7 to 7.25 h at 41.5 degrees C. Overall, greater than 90% agreement was obtained between the methods in determining whether the water quality was acceptable or unacceptable. Statistical analysis of the 984 samples confirmed that the 7-h FC method was a suitable alternative to the most-probable-number FC method for evaluation of freshwater samples. During emergencies or disasters, the 7-h FC test could provide a means for detection of fecal contamination of water with results available in less than 1 day.  相似文献   

11.
In view of the differences that have been found between the most-probable-number and membrane filtration methods for the recovery of coliforms from chlorinated samples, the survival of total and fecal coliforms in UV-irradiated effluent samples, as tested by the most-probable-number and standard single-step membrane filtration methods, was compared. There were no significant differences in the survival of total and fecal coliforms, as tested by the two methods. In a separate set of experiments comparing total and fecal coliform survival, as tested by the most-probable-number method, only a very small but statistically significant difference of 0.1 log survival units was found. For UV-disinfected wastewater effluents, standard one-step membrane filtration procedures are comparable to standard most-probable-number procedures.  相似文献   

12.
The determination of bacterial densities in aquatic sediments generally requires that a dilution-mixing treatment be used before enumeration of organisms by the most-probable-number fermentation tube method can be done. Differential sediment and organism settling rates may, however, influence the distribution of the microbial population after the dilution-mixing process, resulting in biased bacterial density estimates. For standardization of sample preparation procedures, the influence of settling by suspended sediments on the fecal coliform distribution in a mixing vessel was examined. This was accomplished with both inoculated (Escherichia coli) and raw, uninoculated freshwater sediments from Saguaro Lake, Ariz. Both test sediments were coarse (greater than 90% gravel and sand). Coarse sediments are typical of southwestern U.S. lakes. The distribution of fecal coliforms, as determined by the most-probable-number method, was not significantly influenced by sediment settling and remained homogenous over a 16-min postmix period. The technique developed for coarse sediments may be useful for standardizing sample preparation techniques for other sediment types.  相似文献   

13.
The determination of bacterial densities in aquatic sediments generally requires that a dilution-mixing treatment be used before enumeration of organisms by the most-probable-number fermentation tube method can be done. Differential sediment and organism settling rates may, however, influence the distribution of the microbial population after the dilution-mixing process, resulting in biased bacterial density estimates. For standardization of sample preparation procedures, the influence of settling by suspended sediments on the fecal coliform distribution in a mixing vessel was examined. This was accomplished with both inoculated (Escherichia coli) and raw, uninoculated freshwater sediments from Saguaro Lake, Ariz. Both test sediments were coarse (greater than 90% gravel and sand). Coarse sediments are typical of southwestern U.S. lakes. The distribution of fecal coliforms, as determined by the most-probable-number method, was not significantly influenced by sediment settling and remained homogenous over a 16-min postmix period. The technique developed for coarse sediments may be useful for standardizing sample preparation techniques for other sediment types.  相似文献   

14.
The colorimetric beta-galactosidase assay is based upon the enzymatic hydrolysis of the substrate o-nitrophenyl-beta-D-galactoside (ONPG) by fecal coliforms. This technique provides an estimate of the fecal coliform concentration within 8 to 20 h. A 100-ml portion of test sample was passed through a 0.45 micrometer membrane filter. This filter was then incubated at 37 degrees C for 1 h in EC medium followed by the addition of filter-sterilized ONPG. The incubation was continued at 44.5 degrees C until a half-maximum absorbance (at 420 nm) was reached. The time between the start of incubation and the half-maximum absorbance was proportional to the concentration of fecal coliforms present. Escherichia coli (K-12) was used to measure the kinetics of substrate hydrolysis and the response time of different cell concentrations. High cell densities produced an immediate response, whereas 1 cell/ml will produce a response in less than 20 h. In field studies in which samples were taken from a range of grossly polluted streams to relatively clean lake water, a linear correlation between ONPG hydrolysis times and fecal coliform most-probable-number values was established. A total of 302 isolates randomly selected from positive ONPG-EC media, which were derived from 11 different habitats, were identified as E. coli (96.69 percent), Enterobacter cloacae (2.32 percent), Klebsiella pneumoniae (0.66 percent), and Citrobacter freundii (0.33 percent).  相似文献   

15.
The colorimetric beta-galactosidase assay is based upon the enzymatic hydrolysis of the substrate o-nitrophenyl-beta-D-galactoside (ONPG) by fecal coliforms. This technique provides an estimate of the fecal coliform concentration within 8 to 20 h. A 100-ml portion of test sample was passed through a 0.45 micrometer membrane filter. This filter was then incubated at 37 degrees C for 1 h in EC medium followed by the addition of filter-sterilized ONPG. The incubation was continued at 44.5 degrees C until a half-maximum absorbance (at 420 nm) was reached. The time between the start of incubation and the half-maximum absorbance was proportional to the concentration of fecal coliforms present. Escherichia coli (K-12) was used to measure the kinetics of substrate hydrolysis and the response time of different cell concentrations. High cell densities produced an immediate response, whereas 1 cell/ml will produce a response in less than 20 h. In field studies in which samples were taken from a range of grossly polluted streams to relatively clean lake water, a linear correlation between ONPG hydrolysis times and fecal coliform most-probable-number values was established. A total of 302 isolates randomly selected from positive ONPG-EC media, which were derived from 11 different habitats, were identified as E. coli (96.69 percent), Enterobacter cloacae (2.32 percent), Klebsiella pneumoniae (0.66 percent), and Citrobacter freundii (0.33 percent).  相似文献   

16.
A two-layer membrane filtration (MF) medium (injury-mitigating MF [IM-MF]) and a procedure for the enumeration of injured fecal coliforms are described. These procedures included the addition of glycerol and acetate plus reducing agents to both layers of a two-layer medium and rinsing of the filter with a rich resuscitation medium. Some changes in incubation time and temperatures were used. This method was compared with the multiple-tube fermentation most-probable-number procedure and the one-step M-FC agar-membrane filter method (direct M-FC) in terms of fecal coliform recovery from various aquatic environments that cause bacterial injury. With chlorinated sewage effluents, results of the IM-MF technique were equal to or greater than the most probable number in 9 of 18 trials and were 1.3 to 19 times greater than the M-FC method. When sewage samples were chlorinated in the laboratory, fecal coliform counts with IM-MF equaled or exceeded the most probable number in 7 of 15 trials and always exceeded the M-FC. M-FC was exceeded by IM-MF in 30 of 33 trials with clean mountain stream water. Fecal coliform bacteria that were exposed to low levels of an iodophore in the laboratory produced IM-MF counts 3 to 10 times greater than those with M-FC. A biochemical rationale for the formation of the IM-MF medium is discussed.  相似文献   

17.
A two-layer membrane filtration (MF) medium (injury-mitigating MF [IM-MF]) and a procedure for the enumeration of injured fecal coliforms are described. These procedures included the addition of glycerol and acetate plus reducing agents to both layers of a two-layer medium and rinsing of the filter with a rich resuscitation medium. Some changes in incubation time and temperatures were used. This method was compared with the multiple-tube fermentation most-probable-number procedure and the one-step M-FC agar-membrane filter method (direct M-FC) in terms of fecal coliform recovery from various aquatic environments that cause bacterial injury. With chlorinated sewage effluents, results of the IM-MF technique were equal to or greater than the most probable number in 9 of 18 trials and were 1.3 to 19 times greater than the M-FC method. When sewage samples were chlorinated in the laboratory, fecal coliform counts with IM-MF equaled or exceeded the most probable number in 7 of 15 trials and always exceeded the M-FC. M-FC was exceeded by IM-MF in 30 of 33 trials with clean mountain stream water. Fecal coliform bacteria that were exposed to low levels of an iodophore in the laboratory produced IM-MF counts 3 to 10 times greater than those with M-FC. A biochemical rationale for the formation of the IM-MF medium is discussed.  相似文献   

18.
Estimates of NH4+-and NO2-oxidizers in samples from four activated sludge plants treating mainly domestic sewage were obtained using a most-probable-number (MPN) technique. Ranges of concentrations per milliliter of each, respectively, were 1,010 to 3,880 and 79 to 145 in settled sewages, 32 to 7,420 and 2 to 1,010 in secondary effluents, and less than 0.1 to 622 and 0.1 to 70 in chlorinated secondary effluents. The results of this field study indicated that nitrifiers were more resistant to chlorination than fecal streptococci, which were also enumerated. In laboratory studies the survivals of these bacterial groups in secondary effluents were determined after exposure to chlorine residuals of up to 2 mg/liter for 0 to 60 min. The nitrifiers proved considerably more resistant than fecal streptococci, with NO2-oxidizers showing greater resistance than NH4+-oxidizers. Below the outfall of one of the plants that discharges heavily chlorinated unnitrified effluent, NH4+-oxidizers amounted to approximately 200 X 10(5) per g of slime scraped from stream-bed rocks. Upstream of the outfall this was approximatley 3 X 10(5)/G.  相似文献   

19.
The most-probable-number of fecal coliforms in sediments was monitored at the New London dump site in Long Island Sound during the deposition of dredge spoil from the Thames River. Although the geometric mean for fecal coliforms at five stations in the river was 14,000/100 ml before dredging commenced, the deposition of this material did not increase the incidence of fecal coliforms at 17 spoil stations and 13 control stations in the disposal and surrounding areas. Fecal coliforms appear to occur only in the surface sediment material and are diluted by the subsurface material during the dredging operation. Fecal coliform analyses of bottom waters during high and low tides indicated that the flow of water from the Thames River played a major role in determining the most-probable-number of fecal coliforms in the sediments at the disposal site.  相似文献   

20.
The most-probable-number of fecal coliforms in sediments was monitored at the New London dump site in Long Island Sound during the deposition of dredge spoil from the Thames River. Although the geometric mean for fecal coliforms at five stations in the river was 14,000/100 ml before dredging commenced, the deposition of this material did not increase the incidence of fecal coliforms at 17 spoil stations and 13 control stations in the disposal and surrounding areas. Fecal coliforms appear to occur only in the surface sediment material and are diluted by the subsurface material during the dredging operation. Fecal coliform analyses of bottom waters during high and low tides indicated that the flow of water from the Thames River played a major role in determining the most-probable-number of fecal coliforms in the sediments at the disposal site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号