首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bacillus subtilis sporulating cells at stage III were fractionated into mother cell and forespore fractions by means of a lysozyme-detergent method. Three forms of DNA-dependent RNA polymerase enzymes, termed M sigma, F sigma, and F delta, in addition to core enzyme (alpha 2, beta', and beta) have been purified from the cell fractions. Enzymes M sigma and F sigma are present in the mother cell and forespore, respectively, and contain sigma factor of 55,000 daltons in addition to the core subunits. On the other hand, enzyme F delta is present specifically in the forespore and contains delta 1 factor of 28,000 daltons instead of the sigma factor. The amount of RNA polymerase in the forespore is about twice that in the mother cell. The enzymes M sigma and F sigma also differed in their elution profiled from DEAE-cellulose columns and in their heat stabilities indicating that the two sigma-containing holoenzyme forms may be different in their structural properties. The enzyme F delta transcribed B. subtilis DNA about 1.6 times more actively than enzyme F sigma, and the enzymes M sigma and F sigma transcribed the DNA about 2.2 times more actively than did core enzyme.  相似文献   

3.
The isolation and properties of a single site temperature sensitive protease mutant of Bacillus subtilis are described. Numerous criteria suggest that the mutation resides in the structural gene coding for a basic serine protease. The mutation has been mapped between aroD and lys-1 on the Bacillus subtilis chromosome. This protease exists as an intracellular and extracellular enzyme. The mutant cells are temperature sensitive for sporulation, antibiotic production, and the sporulation-specific alteration in DNA-dependent RNA polymerase β subunit. Several types of evidence indicate a direct involvement of this enzyme in a limited proteolytic cleavage of vegetative RNA polymerase β subunit, which produces the lower molecular weight β subunit found in sporulating cells. The derangement in this process is sufficient to account for the stoppage of sporulation at stage 0 when the mutant cells are grown at the non-permissive temperature.  相似文献   

4.
Extracts of sporulating cells were found to be defective in vitro translation of phage SP01 ribonucleic acid (RNA) and vegetative Bacillus subtilis RNA. The activity of washed ribosomes from sporulating cells was very similar to that of washed ribosomes from vegetative cells in translating polyuridylic acid, SP01 RNA, and vegetative RNA. The S-150 fraction from either vegetative or sporulating cells grown in Difco sporulation medium contained an apparent inhibitor of protein synthesis. The crude initiation factor fraction from ribosomes of sporulating cells was defective in promoting the initiation factor-dependent translation of SP01 RNA. The crude initiation factor preparations from sporulating cells were as active as the corresponding preparations from vegetative cells in promoting the initiation factor-dependent translation of either phage Qbeta or phage T4 RNA by washed Escherichia coli ribosomes. The crude initiation factors from sporulating cells were perhaps more active than those from vegetative cells in promoting the initiation factor-dependent synthesis of phage T4 lysozyme by E. coli ribosomes. The crude initiation factor preparations from either vegetative or stationary-phase cells of an asporogenous mutant showed similar ability to promote the in vitro translation of SP01 RNA.  相似文献   

5.
In analogy to the Escherichia coli replicative DNA polymerase III we define two forms of DNA polymerase alpha: the core enzyme and the holoenzyme. The core enzyme is not able to elongate efficiently primed single-stranded DNA templates, in contrast to the holoenzyme which functions well on in vivo-like template. Using these criteria, we have identified and partially purified DNA polymerase alpha holoenzyme from calf thymus and have compared it to the corresponding homogeneous DNA polymerase alpha (defined as the core enzyme) from the same tissue. The holoenzyme is able to use single-stranded parvoviral DNA and M13 DNA with a single RNA primer as template. The core enzyme, on the other hand, although active on DNAs treated with deoxyribonuclease to create random gaps, is unable to act on these two long, single-stranded DNAs. E. coli DNA polymerase III holoenzyme also copies the two in vivo-like templates, while the core enzyme is virtually inactive. The homologous single-stranded DNA-binding proteins from calf thymus and from E. coli stimulate the respective holoenzymes and inhibit the core enzymes. These results suggest a cooperation between a DNA polymerase holoenzyme and its homologous single-stranded DNA-binding protein. The prokaryotic and the mammalian holoenzyme behave similarly in several chromatographic systems.  相似文献   

6.
Asporogenous mutants of Bacillus subtilis were examined for the change in template specificity of ribonucleic acid (RNA) polymerase characteristic of wild-type cells undergoing sporulation. Mutants blocked at stages II, III, and IV showed a changed specificity of the enzyme after the end of growth and were in this respect indistinguishable from the wild type. The RNA polymerase of eight stage-zero mutants (out of nine tested) which possess mutations that map at six distinct loci retained the template specificity of vegetative cells.  相似文献   

7.
During the purification of RNA polymerase from Xanthomonas campestris pv. oryzae, a new subunit named k was found to be associated with this enzyme. The removal of subunit k from holoenzyme by DEAE-cellulose column chromatography results in a decrease in specific activity of the enzyme. The readdition of subunit k to subunit k-depleted holoenzyme results in restoration of enzymatic activity. Subunit k increase the activity of RNA polymerase; the activation was in proportion to the concentration of subunit k added. Antiserum against holoenzyme devoid of subunit k was prepared. This antiserum did not react with purified subunit k; therefore, subunit k may not be the proteolytic fragment of the beta, beta', sigma, or alpha subunit. When this antiserum was used to precipitate RNA polymerase obtained from a crude extract of bacterial cells, subunit k was coprecipitated as determined by sodium dodecyl sulfate gel electrophoretic analysis. The molecular mass of subunit k is approximately 29 kDa, and the molar ratio of beta:beta':sigma:alpha:k was estimated to be 1:1:1:2:4. When native Xp10 DNA was used as template, subunit k stimulated subunit k-depleted holoenzyme, but not core enzyme. When the synthetic polynucleotide poly[d(A-T)] was used, subunit k activated both subunit k-depleted holoenzyme and core enzyme. Subunit k also activated the binding of RNA polymerase to template DNA.  相似文献   

8.
9.
10.
11.
The time course of synthesis and breakdown of various macromolecules has been compared for sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast cells transferred to potassium acetate sporulation medium. Both types of cells incorporate label into ribonucleic acid and protein. The gel electrophoresis patterns of proteins synthesized in sporulation medium are identical for sporulating and nonsporulating diploids; both are different from electropherograms of vegetative cells. Sporulating and nonsporulating strains differ with respect to deoxyribonucleic acid synthesis; no deoxyribonucleic acid is synthesized in the latter case, whereas the deoxyribonucleic acid complement is doubled in the former. Glycogen breakdown occurs only in sporulating strains. Breakdown of preexisting vegetative ribonucleic acid and protein molecules occurs much more extensively in sporulating than in nonsporulating cells. A timetable of these data is presented.  相似文献   

12.
13.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

14.
15.
Proteins synthesized by Saccharomyces cerevisiae in presporulation and sporulation media were compared by using sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast strains. Total cellular proteins were labeled with [35S]methionine and analyzed by two-dimensional polyacrylamide gel electrophoresis. Autoradiograms and/or fluorograms showed some 700 spots per gel. Nine proteins were synthesized by a/alpha cells which were specific to vegetative, log-phase conditions. During incubation in sporulation medium, sporulating (a/alpha) cells synthesized 11 proteins not present in vegetatively growing cell. These same 11 proteins, however, were synthesized by nonsporulating (a/a and alpha/alpha) cells on sporulation medium as well. Nonsporulating diploids (a/a and alpha/alpha) were also examined with the electron microscope at various times during their incubation in sporulation medium. Certain cellular responses found to be unique to meiotic yeast cells in previous studies were exhibited by the nonsporulating controls. The degree to which all cell types (a/alpha, a/a, and alpha/alpha) were committed to sporulation was also determined by shifting cells from sporulation medium to vegetative medium. Some commitment to the meiotic pathway was observed in both the a/alpha and the a/a, alpha/alpha cells.  相似文献   

16.
DNA polymerase III holoenzyme has been purified from Escherichia coli HMS-83, using, as an assay, the conversion of coliphage G4 single-stranded DNA to the duplex replicative form. The holoenzyme consists of at least four different subunits: alpha, beta, gamma, and delta of 140,000, 40,000, 52,000, and 32,000 daltons, respectively. The alpha subunit is DNA polymerase III, the dnaE gene product. The holoenzyme has been resolved by phosphocellulose chromatography into an alpha - gamma - delta complex and a subunit beta (copolymerase III*); neither possesses detectable activity in the G4 system but together reconstitute holoenzyme-like activity. The alpha - gamma - delta complex has been further resolved to yield a gamma - delta complex which reconstitutes alpha - gamma - delta activity when added to DNA polymerase III. The gamma - delta complex contains a product of the dnaZ gene and has been purified from a strain which contains a ColE1-dnaZ hybrid plasmid.  相似文献   

17.
The turnover of nucleic acids and changes in ribonuclease activity during sporulation of Saccharomyces cerevisiae were studied. In the sporulating strains, 37–58% of vegetatively synthesized RNA were degraded during the sporulation process. The degree of degradation of vegetative RNA was proportional to the sporulation ability. In the non-sporulating strains, the degradation of vegetative RNA was less than 28% in the sporulation medium. Accompanied by the degradation of vegetative RNA, a ribonuclease activity increased several times during sporulation. We have found a close relation among the sporulation rate, the degree of the degradation of vegetative RNA and the increase in ribonuclease activity in the sporulation medium, using cells of which sporulation ability was repressed by changing the age or carbon source in various degrees.  相似文献   

18.
The levels of several enzymes have been studied during sporulation of Saccharomyces cerevisia. The specific activities of ribonuclease and aminopeptidase I raised several-fold after transfer of the cells to sporulation medium, whereas the specific activities of phosphofructokinase, glucose-6-phosphate dehydrogenase, tryptophan synthase and pyruvate decarboxylase were not significantly altered. The specific activities of NAD-dependent glutamate dehydrogenase, isocitrate lyase, malate dehydrogenase and fructose bisphosphatase all decreased from the onset of sporulation. The inactivation of these latter enzymes was inhibited by cycloheximide and by inhibitors of energy metabolism. Hexokinase, alcohol dehydrogenase and glutamate oxaloacetate transaminase were partially lost from the cells during the period of ascus maturation. None of the enzyme changes observed proved to be 'sporulation-specific' in that it occurred exclusively in sporulating diploid yeast cells. Therefore it is postulated that the meiotic events and the metabolic changes required for ascospore formation are under separate genetic control in this organism. During sporulation, the cellular content of cytochromes b, c, and aa3 was reduced to 20% or less of that present in vegetative derepressed cells. Since the relative percentage of total to cycloheximide-insensitive mitochondrial protein synthesis was not significantly altered throughout sporulation, and the pattern of mitochondrially synthesized polypeptides was rather similar both in vegetative and in sporulating cells, it appeared that not only degradation but also synthesis and therefore turnover of the mitochondrially coded polypeptides of cytochromes b and aa3 took place during sporulation. The activity ratio of cytochrome c oxidase to F1-ATPase in submitochondrial particles isolated from vegetative cells and from purified asci was almost identical. This indicates that the loss of membrane-bound mitochondrial cytochromes during sporulation is probably due to a nonselective degradation of inner mitochondrial membrane proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号