首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor-1 (FGF1), a member of the FGF family of growth factors, is localized in cholinergic neurons where it has trophic activity. We recently reported that cholinergic neurons in the dorsal motor nucleus of the vagus (DMNV) contain little FGF1, raising the possibility that FGF1 is not localized to parasympathetic preganglionic cholinergic neurons. To clarify this issue, we investigated the co-localization of FGF1 with cholinergic neuron markers in the Edinger-Westphal nucleus (EWN), salivatory nucleus, DMNV, and sacral parasympathetic nucleus by double immunofluorescence using antibodies to FGF1 and choline acetyltransferase (ChAT). The neurons in the EWN were devoid of FGF1. In the salivatory nucleus, 13% of ChAT-positive neurons were also positive for FGF1. In the DMNV, only 8% of ChAT-positive neurons contained FGF1, and in the sacral parasympathetic nucleus, 18% of ChAT-positive neurons were FGF1-positive. We also confirmed that a large number of ChAT-positive motor neurons in the oculomotor nucleus, facial nucleus, hypoglossal nucleus, and spinal motor neurons contained FGF1. The results confirmed that parasympathetic preganglionic neurons are largely devoid of FGF1, which is a unique feature among cholinergic neurons.  相似文献   

2.
Cholinergic neurons have been revealed in the enteric nervous system by functional and biochemical studies but not by antibodies that provide excellent localisation of the synthesising enzyme, choline acetyltransferase (ChAT), in the central nervous system. In order to determine whether a newly described peripheral form of ChAT (pChAT) is a ChAT enzyme of enteric neurons, we have compared pChAT distribution with that of the common form of ChAT, cChAT, by quantitative analysis of the co-localisation of pChAT and cChAT with other neurochemical markers in enteric neurons of the guinea-pig ileum. We found classes of neuron with strong pChAT immunoreactivity (IR) and others with strong cChAT-IR. In myenteric ganglia, strong pChAT-IR was in calbindin-positive intrinsic primary afferent neurons (IPANs), whereas cChAT-IR of these neurons was weak. Calretinin neurons were immunoreactive for cChAT, but not pChAT. Only 4% of nitric oxide synthase (NOS) neurons (possibly interneurons) were pChAT-immunoreactive, similar to observations with cChAT. NOS-immunoreactive inhibitory motor neurons stained with neither cChAT nor pChAT antisera. In the submucosal ganglia, pChAT-IR was strongly expressed in IPANs (identified by cytoplasmic staining for the neuronal nuclear marker, NeuN) and in neuropeptide Y (NPY)-immunoreactive secretomotor neurons, but not in calretinin-immunoreactive neurons. cChAT-IR occurred weakly in submucosal IPANs and also labelled NPY- and calretinin-immunoreactive neurons. Submucosal vasoactive-intestinal-peptide-immunoreactive neurons (non-cholinergic secretomotor neurons) were not reactive for either form of ChAT.  相似文献   

3.
Cholinergic innervation of the heart has been analyzed using cholinergic markers including acetylcholinesterase, choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). In the present study we demonstrate putative cholinergic nerves in the rat heart using an antibody to ChAT of a peripheral type (pChAT), which is the product of a splice variant of ChAT mRNA and preferentially localized to peripheral cholinergic nerves. Expression of mRNAs for pChAT and the conventional form of ChAT (cChAT) were verified in the rat atrium by RT-PCR. Localization of both protein products in the atrium was confirmed by Western blotting. Virtually all neurons and small intensely fluorescent cells in the intrinsic cardiac ganglia were stained immunohistochemically for pChAT. The density of pChAT-positive fibers was very high in the conducting system, high in both atria, the right atrium in particular, and low in the ventricular walls. pChAT and VAChT immunoreactivities were closely associated in some fibers and fiber bundles in the ventricular walls. These results indicate that intrinsic cardiac neurons homogeneously express both pChAT and cChAT. Furthermore, innervation of the ventricular walls by pChAT- and VAChT-positive fibers provides morphological evidence for a significant role of cholinergic mechanisms in ventricular functions.  相似文献   

4.
The distribution of enkephalin-like immunoreactivity (ENK-LI) in the larynx, the superior cervical ganglion (SCG) and the nodose ganglion of adult rats was examined in the present study. A substantial number of the local acetylcholinesterase (AChE)-positive, presumably parasympathetic, ganglionic cells in the larynx displayed ENK-LI. These cells also exhibited neuropeptide Y (NPY)- and vasoactive intestinal polypeptide (VIP)-LI. Varicose nerve fibers showing ENK-LI were observed close to the acini and ducts of the glands, in the perichondrium and in the lamina propria. The varicosities exhibiting ENK-LI frequently displayed NPY- and VIP-LI. The ENK-LI was detected in a subpopulation of AChE-positive nerve fibers in the laryngeal tissue. In the SCG, only a small number of the ganglionic cells displayed ENK-LI. These cells, in contrast to other ganglionic cells of the SCG, did not show NPY-LI. None of the ganglionic cells of the nodose ganglion exhibited ENK-LI. Sympathectomy and vagotomy affected neither the number nor the distribution of fibers showing ENK-LI in the larynx. In conclusion, ENK appears to be present together with NPY and VIP in the parasympathetic innervation of the larynx and in a very limited number of the ganglionic cells of a sympathetic ganglion, the SCG, of the adult rat.  相似文献   

5.
To produce antibodies that permit the immunohistochemical discrimination of choline acetyltransferase of the common type (cChAT) from its splice variant of a peripheral type (pChAT), we immunized rabbits with a cChAT specific recombinant protein encoded by ChAT exons 7 and 8 of the rat cChAT gene. Successful antibody production was proved by Western blotting on rat brain and on HEK293 cells expressing green fluorescent protein (GFP), cChAT-GFP and pChAT-GFP. By immunohistochemistry our antiserum clearly labeled known cholinergic structures in rat brain, but gave no positive staining in the trigeminal ganglion which contained many neurons positive with pChAT antiserum.  相似文献   

6.
pChAT is a splice variant of a peripheral type encoded alternatively by the gene for choline acetyltransferase of the common type (cChAT), the enzyme responsible for acetylcholine synthesis. Immunohistochemistry using pChAT antiserum has successfully visualized many known peripheral cholinergic cells, whereas most cChAT antibodies failed to do so. As, however, accumulating evidence indicates that pChAT expression also occurs in various non-cholinergic neurons, we examined possible acetylcholine production by pChAT in rat dorsal root ganglion as a model. The present study indicated that the ganglion neurons possessed pChAT, but never cChAT, mRNA and protein. Our detailed analysis further showed that, despite low enzyme activities of both choline acetyltransferase and acetylcholinesterase, the level of acetylcholine in the ganglion was as high as to that in various brain regions receiving cholinergic innervation. By using immunoprecipitation methods, we here provide evidence that pChAT definitely has enzyme activity enough to supply physiological concentrations of acetylcholine in the ganglion. We propose that pChAT contributes both to acetylcholine neurotransmission in physiologically identified cholinergic cells and to functions yet unknown in non-cholinergic neurons. Thus pChAT provides a new window on the role of neuronal acetylcholine.  相似文献   

7.
The effects of radiotherapy on neuropeptide expression in the rat larynx were studied. Irradiation was given for five days, 6 or 8 Gray daily. Ten days after the end of irradiation, the larynx, the laryngeal nerves and different ganglia related to the larynx were dissected out from irradiated and control animals and processed for neuropeptide immunohistochemistry. There was an increased immunolabelling for two of the neuropeptides tested, substance P and enkephalin, in the innervation of the subglottic glands and in the acetylcholinesterase-positive ganglionic cells of the local ganglia. These cells were interpreted as representing postganglionic parasympathetic ganglionic cells. The changes seen in the subglottic glands were interpreted as most likely being related to the changing pattern of staining seen in the local ganglia. No changes in substance P-and enkephalin expression were observed in other laryngeal structures, the nodose ganglia, superior cervical ganglia or laryngeal nerve paraganglia. Thus, in certain respects neuropeptide expression in the larynx is modulated by radiotherapy. Since neuropeptides have both neurotransmitter and/or neuromodulator effects in airway tissue and since they show effects as growth factors, the occurrence of this plasticity in neuropeptide expression should be taken into consideration in future studies examining the effects of irradiation on normal/diseased airway tissues.  相似文献   

8.
Immunohistochemical techniques were used to study the distribution of cholinergic neurons containing choline acetyltransferase of the common type (cChAT), the synthetic enzyme of acetylcholine, in the central nervous system of the slug Limax maximus and Limax valentianus. Because the antiserum applied here was raised against a recombinant protein encoded by exons 7 and 8 of the rat gene for ChAT, three methods were used in order to validate antibody specificity for the Limax counterpart enzyme. Western blot combined with ChAT activity assay following native gel electrophoresis and immunoprecipitation analysis both indicated that immunoreactive Limax brain molecules were capable of synthesizing acetylcholine. Western blot after denatured gel electrophoresis of Limax brain extracts revealed a single band of about 67kDa. All findings obtained with these three methods clearly indicated that the antiserum effectively recognized Limax cChAT. 1400 neuronal cell bodies positive for cChAT, mainly small to medium-sized, were found in various brain regions in the buccal, cerebral, pleural, parietal, visceral and pedal ganglia. cChAT immunoreactive nerve fibers were distributed extensively in the neuropil, connectives and commissures of these central ganglia. The map of cChAT-positive cells provided here are valuable for understanding the cholinergic mechanism in the slug brain, as well as giving an important hint to clarifying the mechanisms of learning and memory in higher vertebrates including humans.  相似文献   

9.
Neurocalcin-like immunoreactivity in the rat esophageal nervous system   总被引:1,自引:0,他引:1  
Neurocalcin is a newly identified neuronal calcium-binding protein. We tried here to investigate the immunohistochemical distribution of neurocalcin in the rat esophagus. Nerve cell bodies having neurocalcin immunoreactivity were found throughout the myenteric plexus. In the myenteric ganglia, two types of nerve terminals showed neurocalcin immunoreactivity. One was varicose terminals containing numerous small clear vesicles and forming a synapse with nerve cells. The other terminals were characterized by laminar or pleomorphic structure and many mitochondria. These laminar terminals were supposed to be sensory receptors of the esophageal wall. In the motor endplates of the striated muscles, nerve terminals containing many small clear vesicles and mitochondria also had neurocalcin immunoreactivity. After left vagus nerve cutting under the nodose ganglia, the number of immunopositive thick nerve fibers, laminar endings and nerve terminals on the striated muscles decreased markedly. Retrograde tracing experiments using Fast Blue showed extrinsic innervation of esophagus from ambiguus nucleus, dorsal motor nucleus of vagus, superior cervical ganglia, celiac ganglia, nodose ganglia and dorsal root ganglia. In the celiac ganglia, nodose ganglia and dorsal root ganglia, retrogradely labeled nerve cells were neurocalcin-immunoreactive. Neurons in the celiac ganglia may project varicose terminals, while nodose and dorsal root neurons project laminar terminals. Although cell bodies of motoneurons in the ambiguus nucleus lacked neurocalcin immunoreactivity, these neurons may contain neurocalcin only in the nerve terminals in the motor endplates. Neurocalcin immunoreactivity is distributed in many extrinsic and intrinsic neurons in the esophagus and this protein may play important roles in regulating calcium signaling in the neurons.  相似文献   

10.
The cause of spasmodic dysphonia, a dystonic disorder of the larynx, remains unclear. Recently, TAFII250, TATA-box binding protein associated factor, was suggested to be involved in dystonia parkinsonism. There is a possibility that TAFII250 is involved in spasmodic dysphonia, but little information is available about the expression of TAFII250 in the laryngeal nervous system. In this study, we investigated the localization of TAFII250 protein in the rat laryngeal nervous system by immunohistochemistry. TAFII250-immunoreactivity was detected in the nodose ganglion and superior cervical ganglion. In these nuclei, TAFII250 was localized in the nucleus of NeuroTrace-positive neurons but not in GFAP-positive glial cells. No positive cells were detected in the motor and parasympathetic nervous system. TAFII250-immunoreactivity was sustained between 3 and 7 days after vagotomy, but at 14 days expression was down-regulated in the distal part of the nodose ganglion. These findings suggest that TAFII250 plays an important role in the laryngeal innervation of the sensory and sympathetic nervous systems.  相似文献   

11.
12.
The expression of the P2X3 nucleotide receptor in embryonic day 14–18, postnatal day 1–14 and adult mouse sensory ganglia was examined using immunohistochemistry. Nearly all sensory neurons in dorsal root ganglia, trigeminal ganglia and nodose ganglia in embryos at embryonic day 14 expressed P2X3 receptors, but after birth there was a gradual decline to about 50% of neurons showing positive immunostaining for P2X3. In embryos there were only small neurons, while from postnatal day 7 both large and small neurons were present. Isolectin B4 (IB4)-positive neurons in dorsal, trigeminal and nodose ganglia did not appear until birth, but the numbers increased to about 50% by postnatal day 14 when a high proportion of IB4-positive neurons were also positively labelled for the P2X3 receptor. About 10% of neurons in dorsal, trigeminal and nodose ganglia were positive for calcitonin gene-related peptide in embryos, nearly all of which stained for P2X3 receptors. This increased postnatally to about 35–40% in adults, although only a few colocalised with P2X3 receptors. Neurofilament 200 was expressed in about 50% of neurons in trigeminal ganglia in the embryo, and this level persisted postnatally. All neurofilament 200-positive neurons stained for P2X3 in embryonic dorsal root ganglia, trigeminal ganglia and nodose ganglia, but by adulthood this was significantly reduced. The neurons that were positive for calbindin in embryonic dorsal, trigeminal and nodose ganglia showed colocalisation with P2X3 receptors, but few showed colocalisation postnatally.  相似文献   

13.
Choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine, has been implicated to involve multiple isoforms of ChAT mRNA in several animals. Since these isoforms are mostly non-coding splice variants, only a homologous ChAT protein of about 68 kDa has been shown to be produced in vivo. Recent evidence indicates the existence of a protein coding splice variant of ChAT mRNA, which lacks exons 6-9 of the rat ChAT gene. The encoded protein was designated ChAT of a peripheral type (pChAT), because of its preferential expression in the peripheral nervous system as confirmed by Western blot and immunohistochemistry. However, functional significance of pChAT is unknown. To obtain a clue to this question, we examined a possible difference in intracellular trafficking between pChAT and the well-known ChAT of the common type (cChAT) using green fluorescent protein (GFP) in living human embryonic kidney cells. Confocal laser scanning microscopy revealed that pChAT-GFP was detectable in the cytoplasm but not in the nucleus, whereas cChAT-GFP was found in both cytoplasm and nucleus. Following treatment with leptomycin B, a nuclear export pathway inhibitor, pChAT-GFP became detectable in both cytoplasm and nucleus, indicating that pChAT can be translocated to the nucleus. In contrast, the leptomycin B treatment did not seem to affect the content of intranuclear cChAT-GFP. After incubation with protein kinase C inhibitors, enhanced accumulation of pChAT-GFP but not cChAT-GFP occurred in the nucleus. These results clearly indicate that pChAT varies from cChAT in intracellular transportation, probably reflecting the difference in physiological roles between pChAT and cChAT.  相似文献   

14.
Immunoreactivity of leptin receptor (Ob-R) has been detected in rat dorsal motor nucleus of the vagus (DMNV). Here, we confirmed the presence of Ob-R immunoreactivity on retrograde-labeled parasympathetic preganglionic neurons in the DMNV of neonatal rats. The present study investigated the effects of leptin on DMNV neurons, including parasympathetic preganglionic neurons, by using whole cell patch-clamp recording technique in brain stem slices of neonatal rats. Leptin (30-300 nM) induced membrane depolarization and hyperpolarization, respectively, in 14 and 15 out of 80 DMNV neurons tested. Both leptin-induced inward and outward currents persisted in the presence of TTX, indicating that leptin affected DNMV neurons postsynaptically. The current-voltage (I-V) curve of leptin-induced inward currents is characterized by negative slope conductance and has an average reversal potential of -90 +/- 3 mV. The reversal potential of the leptin-induced inward current was shifted to a more positive potential level in a high-potassium medium. These results indicate that a decrease in potassium conductance is likely the main ionic mechanism underlying the leptin-induced depolarization. On the other hand, the I-V curve of leptin-induced outward currents is characterized by positive slope conductance and has an average reversal potential of -88 +/- 3 mV, suggesting that an increase in potassium conductance may underlie leptin-induced hyperpolarization. Most of the leptin-responsive DMNV neurons were identified as being parasympathetic preganglionic neurons. These results suggest that the DMNV is one of the central target sites of leptin, and leptin can regulate parasympathetic outflow from the DMNV by directly acting on the parasympathetic preganglionic neurons of the DMNV.  相似文献   

15.
Expression of the cholinergic gene locus in the rat placenta   总被引:5,自引:2,他引:3  
High amounts of acetylcholine (ACh) and its synthesising enzyme choline acetyltransferase (ChAT) have been detected in the placenta. Since the placenta is not innervated by extrinsic or intrinsic cholinergic neurons, placental ACh and ChAT originate from non-neuronal sources. In neurons, cytoplasmic ACh is imported into synaptic vesicles by the vesicular acetylcholine transporter (VAChT), and released through vesicular exocytosis. In view of the coordinate expression of VAChT and ChAT from the cholinergic gene locus in neurons, we asked whether VAChT is coexpressed with ChAT in rat placenta, and investigated this issue by means of RT-PCR, in situ hybridisation, western blot and immunohistochemistry. Messenger RNA and protein of the common type of ChAT (cChAT), its splice variant peripheral ChAT (pChAT), and VAChT were detected in rat placenta with RT-PCR and western blot. ChAT in situ hybridisation signal and immunoreactivity for cChAT and pChAT were observed in nearly all placental cell types, while VAChT mRNA and immunolabelling were detected in the trophoblast, mesenchymal cells and the visceral yolk sac epithelial cells. While ChAT is nearly ubiquitously expressed in rat placenta, VAChT immunoreactivity is localised cell type specifically, implying that both vesicular and non-vesicular ACh release machineries prevail in placental cell types.  相似文献   

16.
Expression of vanilloid receptors in sympathetic and afferent ganglionic neurons was studied in rats of different ages (newborn, 10-day old, 20-day old, 30-day old, 60-, 180-day old) using immunohistochemical methods. The results obtained indicate that the majority of the afferent neurons in the nodose ganglion of vagus nerve (GNVN) and in the spinal ganglia (SG) were TRPV1-positive from birth onwards. The percentage of neurons containing TRPVT receptors in SG slightly increased with age up to 30 days postnatally. In the GNVN, the percentage of TRPV1-positive neurons was higher in comparison with the SG in all age groups. The vast majority of the sympathetic neurons were TRPV1-positive from birth onwards, and the percentage of TRPV1-immunoreactive neurons substantially decreased during further development. In 20-day old and older animals, we observed only few TRPV1-immunoreactive neurons in sympathetic ganglia. Finally, the percentage of neurons containing these types of neurons, become similar to adult animals to the end of the first month of life.  相似文献   

17.
In ferrets, we investigated the presence of choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and markers for nitric oxide synthase (NOS) in preganglionic parasympathetic neurons innervating extrathoracic trachea and intrapulmonary airways. Cholera toxin beta-subunit, a retrograde axonal transganglionic tracer, was used to identify airway-related vagal preganglionic neurons. Double-labeling immunohistochemistry and confocal microscopy were employed to characterize the chemical nature of identified airway-related vagal preganglionic neurons at a single cell level. Physiological experiments were performed to determine whether activation of the VIP and ChAT coexpressing vagal preganglionic neurons plays a role in relaxation of precontracted airway smooth muscle tone after muscarinic receptor blockade. The results showed that 1) all identified vagal preganglionic neurons innervating extrathoracic and intrapulmonary airways are acetylcholine-producing cells, 2) cholinergic neurons innervating the airways coexpress ChAT and VIP but do not contain NOS, and 3) chemical stimulation of the rostral nucleus ambiguus had no significant effect on precontracted airway smooth muscle tone after muscarinic receptor blockade. These studies indicate that vagal preganglionic neurons are cholinergic in nature and coexpress VIP but do not contain NOS; their stimulation increases cholinergic outflow, without activation of inhibitory nonadrenergic, noncholinergic ganglionic neurons, stimulation of which induces airway smooth muscle relaxation. Furthermore, these studies do not support the possibility of direct inhibitory innervation of airway smooth muscle by vagal preganglionic fibers that contain VIP.  相似文献   

18.
The lipid content and composition of rat superior cervical ganglia containing sympathetic motor neurons and nodose ganglia containing parasympathetic sensory neurons were studied for the first time to elucidate the mechanism of the different effects of exogenous gangliosides on these neurons in the culture medium. The ganglioside content of the superior cervical ganglia was almost 3-times that of the nodose ganglia. Although both ganglia contained GM3, GD3, GD1b and GT1b as major gangliosides, the nodose ganglia additionally contained a significant amount of sialosyllactoneotetraosylceramide LM1 (10% of total sialic acids). Contrasting with nodose ganglia, vagus fiber and dorsal root ganglia of rats, superior cervical ganglia had a higher content of sulfatide than galactosylceramide. The phospholipid content was lower in superior cervical ganglia than in nodose ganglia. Superior cervical ganglia contained less ethanolamine plasmalogen and more phosphatidylcholine than nodose ganglia. Sphingomyelin in superior cervical ganglia contained mainly medium-chain fatty acids, while that in nodose ganglia contained mainly longer-chain fatty acids. Differences in the fatty acid composition of glycerophospholipids were also observed. The results indicate that the properties of neuronal cell membranes from superior cervical ganglia and nodose ganglia are quite different, and that the differences may reflect the physiological roles of these ganglia.  相似文献   

19.
We evaluated whether pericardial injections of the retrograde tracers cholera toxin subunit B (CTb) or Fast Blue (FB) reliably labelled cardiac vagal pre-ganglionic neurons. Injections of CTb into the pericardial space of the rat labelled neurons in both the external and compact formations of the nucleus ambiguus. Most labelled neurons were found in the compact formation of the nucleus ambiguus, and the majority of these, and only these, expressed immunoreactivity for calcitonin gene-related peptide. This distribution of labelled neurons and their immunohistochemical properties is characteristic of oesophageal motoneurons. Examination of the oesophagus following intra-pericardial CTb applications revealed strong labelling of motor end plates within the skeletal muscle of the thoracic but not the abdominal oesophagus. When a second retrograde tracer, FB, was injected into the abdominal oesophagus, labelled somata were found adjacent to CTb-labelled neurons in the compact formation of the nucleus ambiguus. No co-localisation of tracers was found, but identical proportions of calcitonin gene-related peptide (CGRP) immunoreactivity were observed in both groups of neurons. FB injected into the pericardial space labelled intra-cardiac neurons but not brainstem neurons. We conclude that intra-pericardial, and perhaps sub-epicardial, injections of some retrograde tracers are likely to label a subset of oesophageal, as well as cardiac, vagal motor neurons in the brainstem.This work was supported in part by grant No. G 00 M 0670 from the National Heart Foundation of Australia.  相似文献   

20.
应用免疫组织化学和原位杂交方法研究了大鼠心内神经节细胞中SS的分布及其mRNA表达。结果发现,大鼠心内神经节中有SS-IR阳性神经纤维和细胞,心内神经部分细胞浆中有SSmRNA表达,表明大鼠心内神经节细胞有SS合成和贮存。用小剂量6-OH-DA选择性损毁心内交感神经纤维后,心内神经节中SS-IR阳性神经纤维和细胞的积分光密度均有不同程度增强,反映了心内交感神经和付交感神经的相互抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号