首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, we described a triple mutant of the bacterial cytochrome P450 BM3 as the first mutant with affinity for drug-like compounds. In this paper, we show that this mutant, but not wild-type BM3, is able to metabolise testosterone and several drug-like molecules such as amodiaquine, dextromethorphan, acetaminophen, and 3,4-methylenedioxymethylamphetamine that are known substrates of human P450s. Interestingly, the metabolism of 3,4-methylenedioxymethylamphetamine and acetaminophen could be stimulated up to 70-fold by the addition of caffeine, a known activator of rat P450 3A2. With testosterone metabolism, homotropic cooperativity was observed. This shows that heterotropic and homotropic cooperativity, known to occur in the P450 3A family, can also take place in BM3. BM3 therefore can be used as a model system to study atypical kinetics in mammalian P450s. Second, this study shows that BM3 can be engineered to a drug-metabolising enzyme, making it a promising candidate to use as biocatalyst in drug discovery and synthesis.  相似文献   

2.
Heterologous expression of CYP73A5, an Arabidopsis cytochrome P450 monooxygenase, in baculovirus-infected insect cells yields correctly configured P450 detectable by reduced CO spectral analysis in microsomes and cell lysates. Co-expression of a housefly NADPH P450 reductase substantially increases the ability of this P450 to hydroxylate trans-cinnamic acid, its natural phenylpropanoid substrate. For development of high-throughput P450 substrate profiling procedures, membrane proteins derived from cells overexpressing CYP73A5 and/or NADPH P450 reductase were incorporated into soluble His(6)-tagged nanoscale lipid bilayers (Nanodiscs) using a simple self-assembly process. Biochemical characterizations of nickel affinity-purified and size-fractionated Nanodiscs indicate that CYP73A5 protein assembled into Nanodiscs in the absence of NADPH P450 reductase maintains its ability to bind its t-cinnamic acid substrate. CYP73A5 protein co-assembled with P450 reductase into Nanodiscs hydroxylates t-cinnamic acid using reduced pyridine nucleotide as an electron source. These data indicate that baculovirus-expressed P450s assembled in Nanodiscs can be used to define the chemical binding profiles and enzymatic activities of these monooxygenases.  相似文献   

3.
Traditional reconstitution of membrane cytochromes P450 monooxygenase system requires efficient solubilization of both P450 heme enzymes and redox partner NADPH dependent reductase, CPR, either in mixed micellar solution or by incorporation in liposomes. Here we describe a simple alternative approach to assembly of soluble complexes of monomeric human hepatic cytochrome P450 CYP3A4 with CPR by co-incorporation into nanoscale POPC bilayer Nanodiscs. Stable and fully functional complexes with different CPR:CYP3A4 stoichiometric ratios are formed within several minutes after addition of the full-length CPR to the solution of CYP3A4 preassembled into POPC Nanodiscs at 37 °C. We find that the steady state rates of NADPH oxidation and testosterone hydroxylation strongly depend on CPR:CYP3A4 ratio and reach maximum at tenfold molar access of CPR. The binding of CPR to CYP3A4 in Nanodiscs is tight, such that complexes with different stoichiometry can be separated by size-exclusion chromatography. Reconstitution systems based on the co-incorporation of CPR into preformed Nanodiscs with different human cytochromes P450 are suitable for high-throughput screening of substrates and inhibitors and for drug-drug interaction studies.  相似文献   

4.
Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, Escherichia coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis13C,15N-labeled His4CYP98A3 is expressed at yields of 2-4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated His4CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins.  相似文献   

5.
Cytochrome P450 3A4 (CYP3A4) displays non-Michaelis-Menten kinetics for many of the substrates it metabolizes, including testosterone (TST) and α-naphthoflavone (ANF). Heterotropic effects between these two substrates can further complicate the metabolic profile of the enzyme. In this work, monomeric CYP3A4 solubilized in Nanodiscs has been studied for its ability to interact with varying molar ratios of ANF and TST. Comparison of the observed heme spin state, NADPH consumption, and product formation rates with a non-cooperative model calculated from a linear combination of the global analysis of each substrate reveals a detailed landscape of the heterotropic interactions and indicates negligible binding cooperativity between ANF and TST. The observed effect of ANF on the kinetics of TST metabolism is due to the additive action of the second substrate with no specific allosteric effects.  相似文献   

6.
7.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.  相似文献   

8.
Glutathione (GSH) exerted a profound effect on the oxidation of 7-benzyloxy-4-(trifluoromethyl)coumarin (BFC) and 7-benzyloxyquinoline (BQ) by human liver microsomes as well as by CYP3A4-containing insect cell microsomes (Baculosomes). The cooperativity in O-debenzylation of both substrates is eliminated in the presence of 1-4 mM GSH. Addition of GSH also increased the amplitude of the 1-PB induced spin shift with purified CYP3A4 and abolished the cooperativity of 1-PB or BFC binding. Changes in fluorescence of 6-bromoacetyl-2-dimethylaminonaphthalene attached to the cysteine-depleted mutant CYP3A4(C58,C64) suggest a GSH-induced conformational changes in proximity of α-helix A. Importantly, the KS value for formation of the GSH complex and the concentrations in which GSH decreases CYP3A4 cooperativity are consistent with the physiological concentrations of GSH in hepatocytes. Therefore, the allosteric effect of GSH on CYP3A4 may play an important role in regulation of microsomal monooxygenase activity in vivo.  相似文献   

9.
We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids.  相似文献   

10.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

11.
In vitro biocatalysis with cytochrome P450 BM-3 was investigated aiming for the substitution of the expensive natural cofactor NADPH by electrochemistry. The monooxygenase was immobilized on electrodes by entrapment in polypyrrole as a conductive polymer for electrochemically wiring the enzyme. Electropolymerization of pyrrole proved to be a useful means of immobilising an active cytochrome P450 BM-3 mutein on platinum and glassy carbon electrodes without denaturation. Repeatedly sweeping the electric potential between −600 and +600 mV versus Ag/AgCl led to enzymatically-catalysed product formation while in the absence of the enzyme no product formed under otherwise identical conditions.  相似文献   

12.
The mechanisms of ligand binding and allostery in the major human drug-metabolizing enzyme cytochrome P450 3A4 (CYP3A4) were explored with fluorescence resonance energy transfer (FRET) using a laser dye, fluorol-7GA (F7GA), as a model substrate. Incorporation into the enzyme of a thiol-reactive FRET probe, pyrene iodoacetamide, allowed us to monitor the binding by FRET from the pyrene donor to the F7GA acceptor. Cooperativity of the interactions detected by FRET indicates that the enzyme possesses at least two F7GA-binding sites that have different FRET efficiencies and are therefore widely separated. To probe spatial localization of these sites, we studied FRET in a series of mutants bearing pyrene iodoacetamide at different positions, and we measured the distances from each of the sites to the donor. Our results demonstrate the presence of a high affinity binding site at the enzyme periphery. Analysis of the set of measured distances complemented with molecular modeling and docking allowed us to pinpoint the most probable peripheral site. It is located in the vicinity of residues 217-220, similar to the position of the progesterone molecule bound at the distal surface of the CYP3A4 in a prior x-ray crystal structure. Peripheral binding of F7GA causes a substantial spin shift and serves as a prerequisite for the binding in the active site. This is the first indication of functionally important ligand binding outside of the active site in cytochromes P450. The findings strongly suggest that the mechanisms of CYP3A4 cooperativity involve a conformational transition triggered by an allosteric ligand.  相似文献   

13.
The HIV protease inhibitor ritonavir (RTV) is also a potent inhibitor of the metabolizing enzyme cytochrome P450 3A (CYP3A) and is clinically useful in HIV therapy in its ability to enhance human plasma levels of other HIV protease inhibitors (PIs). A novel series of CYP3A inhibitors was designed around the structural elements of RTV believed to be important to CYP3A inhibition, with general design features being the attachment of groups that mimic the P2–P3 segment of RTV to a soluble core. Several analogs were found to strongly enhance plasma levels of lopinavir (LPV), including 8, which compares favorably with RTV in the same model. Interestingly, an inverse correlation between in vitro inhibition of CYP3A and elevation of LPV was observed. The compounds described in this study may be useful for enhancing the pharmacokinetics of drugs that are metabolized by CYP3A.  相似文献   

14.
The site(s) of interaction between human cytochrome P450 2B6 and NADPH-cytochrome P450 reductase (P450 reductase) have yet to be identified. To investigate this, the cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used to covalently link P450 2B6-P450 reductase. Following digestion with trypsin, the cross-linked peptides were identified by reconstituting the peptides in 18O-water based on the principle that the cross-linked peptides would be expected to incorporate twice as many 18O atoms as the non-cross-linked peptides. Subsequent mass spectrometric analyses of the resulting peptides led to the identification of one cross-linked peptide candidate. De novo sequencing of the peptide indicated that it is a complex between residues in the C-helix of the P450 (based upon solved X-ray crystal structures of P450 2B4) and the connecting domain of the P450 reductase. To confirm this experimentally, the P450 2B6 peptide identified through the cross-linking studies was synthesized and peptide competition studies were performed. In the presence of the synthetic peptide, P450 catalytic activity was decreased by up to 60% when compared to competition studies performed using a nonsense peptide. Taken together, these studies indicate that residues in the C-helix of P450 2B6 play a major role in the interaction with the P450 reductase.  相似文献   

15.
We set out to find if the strain-specific, male-specific hepatic expression of Cyp4a protein in mouse was due to expression of Cyp4a12 and to understand the genetic basis for reported differences in expression. 12-Lauric acid hydroxylase (LAH) activity was found to show higher levels in male ddY, but not C57Bl/6, mouse liver microsomes. The expression of Cyp4a12 mRNA was studied using RNAase protection assays in male and female liver and kidney of nine mouse strains. Cyp4a12 was found to be highly expressed in male liver and kidney, but at much lower levels in female liver and kidney, in all strains studied. Western blotting with an antibody specific for Cyp4a12 confirmed that Cyp4a12 was expressed in a male specific fashion in C57Bl/6 mouse liver. RNAase protection analysis for Cyp4a10 and 14 in ddY mice revealed that neither of these genes showed male-specific expression. To further investigate genetic factors that control male-specific Cyp4a12 expression, PPARalpha+/+ and -/- mice were studied, showing that total P450 and 12-LAH activity was male-specific in +/+, but not -/- mice. RNAase protection assays were used to confirm that Cyp4a12 was lower in -/- mice. However, the male-specific Slp and MUP-1 genes retained hepatic male-specific levels of expression in +/+ and -/- mice, showing that the decrease in Cyp4a12 was not a general effect on male-specific expression. Thus, PPARalpha has a specific effect on constitutive expression of Cyp4a12.  相似文献   

16.
The structural basis for the cooperativity of diazepam oxidation catalyzed by human cytochrome P450 3A4 (CYP3A4) and 40 mutants has been investigated. An ordered two-site model in which substrates bind first to a catalytic/effector site and then to the catalytic site was used to explain sigmoidal kinetics for temazepam formation but hyperbolic kinetics for nordiazepam formation. In this model diazepam binds to the enzyme-substrate complex with a greater affinity (K(S2)=140 microM) than to free enzyme (K(S1)=960 microM). Residues 107, 119, 211, 301, 304, 309, 369, 370, and 373 play an important role in determining regioselectivity of diazepam oxidation. Interestingly, S119F and A370F displayed sigmoidal kinetics for nordiazepam formation, whereas I301F exhibited hyperbolic kinetics for both products. In the presence of increasing concentrations of testosterone, K(S1) for diazepam decreased, whereas K(S2) increased. The data suggest that three sites exist within the active pocket.  相似文献   

17.
We used a rapid scanning stop-flow technique to study the kinetics of reduction of cytochrome P450 3A4 (CYP3A4) by the flavin domain of cytochrome P450-BM3 (BMR), which was shown to form a stoichiometric complex (KD = 0.48 μM) with CYP3A4. In the absence of substrates only about 50% of CYP3A4 was able to accept electrons from BMR. Whereas the high-spin fraction was completely reducible, the reducibility of the low-spin fraction did not exceed 42%. Among four substrates tested (testosterone, 1-pyrenebutanol, bromocriptine, or α-naphthoflavone (ANF)) only ANF is capable of increasing the reducibility of the low-spin fraction to 75%. Our results demonstrate that the pool of CYP3A4 is heterogeneous, and not all P450 is competent for electron transfer in the complex with reductase. The increase in the reducibility of the enzyme in the presence of ANF may represent an important element of the mechanism of action of this activator.  相似文献   

18.
Cytochrome P450 1A2 metabolizes a number of important drugs, procarcinogens, and endogenous compounds. Several flavones, a class of phytochemicals consumed in the human diet, have been shown to differentially inhibit human P450 1A2-mediated methoxyresorufin demethylase. A molecular model of this P450 was constructed in order to elucidate the molecular basis of the P450-flavone interaction. Flavone and its 3,5,7-trihydroxy and 3,5,7-trimethoxy derivatives were docked into the active site to assess their mode of binding. The site is hydrophobic and includes several residues that hydrogen bond with substituents on the flavone nucleus. The binding interactions of these flavones in the modeled active side are consistent with their relative inhibitory potentials, namely 3,5,7-trihydroxylflavone > flavone >3,5,7-trimethoxylflavone, toward P450 1A2-mediated methoxyresorufin demethylation.  相似文献   

19.
Cytochrome P450 1A2 metabolizes a number of important drugs, procarcinogens, and endogenous compounds. Several flavones, a class of phytochemicals consumed in the human diet, have been shown to differentially inhibit human P450 1A2-mediated methoxyresorufin demethylase. A molecular model of this P450 was constructed in order to elucidate the molecular basis of the P450-flavone interaction. Flavone and its 3,5,7-trihydroxy and 3,5,7-trimethoxy derivatives were docked into the active site to assess their mode of binding. The site is hydrophobic and includes several residues that hydrogen bond with substituents on the flavone nucleus. The binding interactions of these flavones in the modeled active side are consistent with their relative inhibitory potentials, namely 3,5,7-trihydroxylflavone > flavone >3,5,7-trimethoxylflavone, toward P450 1A2-mediated methoxyresorufin demethylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号