首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insulin-like growth factor binding proteins (IGF-BPs) are structurally and immunologically distinct from the IGF type 1 or type 2 receptors and are characterized by two major forms: a large, GH-dependent BP found in human plasma (Mr = 150 k) and a small GH-independent BP (Mr = 28-42 k) present in human plasma, amniotic fluid, and HEP G2 cells. Using affinity cross-linking techniques, we have identified several binding proteins secreted by human breast cancer cell lines (Hs578T, MDA-231, T-47D, and MCF-7). Under nonreducing conditions these proteins migrated at an apparent Mr = 35, 28, 27, and 24 k, while reducing conditions revealed bands of apparent Mr = 35, 32, 27, and 24 k. Competitive binding studies in T-47D-conditioned media demonstrated that these BPs bound more IGF-II than IGF-I, and that IGF-II potently inhibited binding of either IGF-I or -II. Immunological studies using a polyclonal antibody against the HEP G2 small BP revealed no immunoreactive BP in conditioned media from MCF-7 and T-47D and only slight immunoreactivity in conditioned media from Hs578T and MDA 231. Analysis by Northern blot, using a probe from the cDNA sequence of the HEP G2 BP, demonstrated that Hs578T and MDA-231 cell lines contained small amounts of the 1.65 kilobase mRNA characteristic of the HEP G2 BP, while MCF-7 and T-47D tested negative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The IGFs may be important autocrine, paracrine or endocrine growth factors for human breast cancer. IGF-I and II stimulate growth of cultured human breast cancer cells. IGF-I is slightly more potent, paralleling its higher affinity for the IGF-I receptor. Antibody blockade of the IGF-I receptor inhibits growth stimulation induced by both IGFs, suggesting that this receptor mediates the growth effects of both peptides. However, IGF-I receptor blockade does not inhibit estrogen (E2)-induced growth suggesting that secreted IGFs are not the major mediators of E2 action. Several breast cancer cell lines express IGF-II mRNA by both Northern analysis and RNase protection assay. IGF-II activity is found in conditioned medium by radioimmuno and radioreceptor assay, after removal of somatomedin binding proteins (BP) which are secreted in abundance. IGF-I is undetectable. BPs of 25 and 40 K predominate in ER-negative cell lines while BPs of 36 K predominate in ER-positive cells. Blockade of the IGF-I receptor inhibits anchorage-independent and monolayer growth in serum of a panel of breast cancer cell lines. Growth of one line (MDA-231) was also inhibited in vivo by receptor antibody treatment of nude mice. The antibody had no effect on growth of MCF-7 tumors. These data suggest the IGFs are important regulators of breast cancer cell proliferation and that antagonism of this pathway may offer a new treatment strategy.  相似文献   

3.
Estrogen sensitizes the MCF-7 estrogen-responsive breast cancer cell line to the mitogenic effect of insulin and the insulin-like growth factors (IGFs). This sensitization is specific for estrogen and occurs at physiological concentrations of estradiol. Dose-response experiments with insulin, IGF-I, and IGF-II suggested that the sensitization is mediated through the type I IGF receptor. Binding experiments with 125I-IGF-I and hybridization of a type I IGF receptor probe to RNA showed that the levels of the type I IGF receptor and its mRNA are increased 7- and 6.5-fold, respectively, by estradiol. IGF-I and estradiol had similar synergistic effects on other estrogen-responsive breast cancer cell lines, but IGF-I alone increased the proliferation of the MDA MB-231 cell line which is not responsive to estrogens. These experiments suggest that an important mechanism by which estrogens stimulate the proliferation of hormone-dependent breast cancer cells involves sensitization to the proliferative effects of IGFs and that this may involve regulation of the type I IGF receptor.  相似文献   

4.
The insulin like growth factors (IGFs), potent mitogens for a variety of normal and transformed cells, have been reported to be secreted by several human breast cancer cell lines (BC). We have investigated the binding characteristics of IGF-I and -II in four human BC: MCF-7, T-47D, MDA 231 and Hs578T. Binding studies in microsomal membrane preparations detected high specific binding for both IGF in all four BC studied. Cross-linking with 125I-IGF-I, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reduced conditions, revealed the presence of an alpha subunit of apparent Mr = 130,000 in MCF-7, T-47D and MDA 213 cells. When 125I-IGF-II was cross-linked, a major band of apparent Mr = 260,000 was seen in all BC. This band was inhibited by IGF-II, but not by insulin. Cross-linking of 125I-IGF-I to conditioned media from BC demonstrated the presence of three binding proteins of apparent Mr = 45,000, 36,000 and 29,000 in all BC but T-47D, in which the 36,000 band was not seen. These data demonstrate that BC possess classical receptors for both IGF-I and -II and, furthermore, that BC produce specific binding proteins for these growth factors.  相似文献   

5.
Four estrogen receptor-positive (ER+) [MCF-7, T47D, ZR75 and BT474] and 3 ER- [Hs578T, MDA-MB-468 and MDA-MB-231] human breast cancer cell lines were examined for expression of the IGFBP-5 and IGFBP-6 genes. Northern blot analysis revealed that all cell lines, except MDA-MB-231, expressed IGFBP-5 mRNA. IGFBP-6 mRNA, however, was expressed only by the ER- cell lines. Western immunoblotting indicated that the previously unidentified 31-kDa and 32-kDa IGF binding species secreted by these cell lines are IGFBP-5. The levels of IGFBP-4 and IGFBP-5 were increased in MCF-7 cells by estradiol and IGF-I, respectively, indicating that these BPs may contribute to the growth stimulatory response to these mitogens.  相似文献   

6.
We have studied the estrogenic regulation and the potential autocrine role of transforming growth factor alpha (TGF alpha) in the human breast cancer cell line MCF-7. A biologically active apparent mol wt 30 k TGF alpha was identified by gel filtration chromatography in medium conditioned by MCF-7 breast cancer cells. We previously reported induction of TGF alpha levels in medium by 17 beta-estradiol. We now report correlated increases in TGF alpha mRNA, by Northern and slot blot analysis, after estrogen treatment of MCF-7 cells in vitro. In vivo experiments confirmed these data: estrogen withdrawal from MCF-7 tumor-bearing nude mice resulted in a decline in tumor size and TGF alpha mRNA levels. To explore the functional significance of TGF alpha in MCF-7 cells, anti-TGF alpha antibody was added to MCF-7 soft agar cloning assays. Inhibition of MCF-7 growth resulted, supporting an autocrine role for TGF alpha. Further experiments using an anti-EGF receptor antibody expanded this data, demonstrating inhibition of estrogen-stimulated monolayer MCF-7 cell growth. Examining the generality of TGF alpha expression, 4.8 kilobase TGF alpha mRNAs were seen in three other human breast cancer cell lines, MDA-MB-231, ZR 75B, and T47D. Expression of TGF alpha mRNA was detected in 70% of estrogen receptor positive and negative primary human breast tumors from 40 patients when examined by slot blot and Northern analysis. Thus, we have demonstrated broad expression of TGF alpha in human breast cancer, its hormonal regulation in an estrogen-responsive cell line, and its possible functional significance in MCF-7 cell growth.  相似文献   

7.
Insulin-like growth factor-I (IGF-I) receptors are present in breast cancer cells and may play a role in breast cancer cell growth. We have studied the effect of progestins on IGF-I receptors in T47D human breast cancer cells. T47D cells constitutively express high levels of progesterone receptors and are a model for studying the regulation of cellular functions by progestins. Treatment of T47D cells with either progesterone or the synthetic progestin promegestone (R5020) decreased IGF-I receptor content by approximately 50%, as measured by Scatchard analysis and receptor biosynthesis studies. In contrast to progestins, estradiol, dexamethasone, and dihydrotestosterone did not influence IGF-I receptor content. No effect of R5020 was seen after 12 h of incubation, a near-maximal effect was seen after 24 h, and greatest effects were seen after 72 h. R5020 decreased IGF-I receptor mRNA abundance, indicating that progestins acted at the level of gene expression. However, progestins also increased the secretion of IGF-II, a ligand for the IGF-I receptor. In contrast to IGF-II, T47D cells did not express IGF-I. The addition of exogenous IGF-II to T47D cells down-regulated both IGF-I receptor binding and IGF-I receptor mRNA abundance. This study indicates, therefore, that progestins regulate IGF-I receptors in breast cancer cells and suggests that this regulation occurs via an autocrine pathway involving enhanced IGF-II secretion.  相似文献   

8.
Bone morphogenetic protein-6 (BMP-6) is closely correlated with tumor differentiation and skeletal metastasis. Our previous research found that BMP-6 gene expression can be activated dose-dependently by estrogen in estrogen receptor positive (ER+) breast cancer cell line MCF-7, but not in ER negative (ER) cell line MDA-MB-231. This experiment is designed to investigate the epigenetic regulatory mechanism of the BMP-6 gene expression in breast cancer cell lines MDA-MB-231, MCF-7 and T47D with regard to the methylation status in the 5′ flanking region of the human BMP-6 gene. The endogenous level of BMP-6 mRNA in ER cell line MDA-MB-231 was relatively lower than that in ER+ MCF-7 and T47D cell lines. After the treatment with 5-aza-2′-deoxycytidine (5-aza-dC, especially in the concentration of 10 μM), the BMP-6 mRNA expression in MDA-MB-231 was obviously up-regulated. However, 5-aza-dC treatment failed to regulate the expression of BMP-6 in MCF-7 and T47D cells. Using enzyme restriction PCR (MSRE-PCR), as well as bisulfite sequencing (BSG), methylation of human BMP-6 gene promoter was detected in MDA-MB-231; while in MCF-7 and T47D, BMP-6 gene promoter remained demethylated status. In 33 breast tumor specimens, promoter methylation of BMP-6 was detected by methylation-specific PCR, hypermethylation of BMP-6 was observed in ER negative cases (16 of 16 cases (100%)), while obviously lower methylation frequency were observed in ER positive cases (3 of 17 cases (18%)), indicating that BMP-6 promoter methylation status is correlated with ER status in breast cancer.  相似文献   

9.
Although GHRH has previously been shown to regulate proliferation of breast cancer cells and prevent apoptosis, the intracellular pathways mediating this effect have not been clarified. Exogenous GHRH stimulated a dose-dependent proliferative response within 24 h in MDA-231, as well as in T47D cells and in MCF-7 cells transfected with the GHRH receptor. The proliferation of MDA-MB-231 (MDA-231) cells was associated with an increase in tritiated thymidine uptake. In addition, phosphorylation of MAPK was rapidly stimulated by GHRH. The phosphorylation of MAPK by GHRH was prevented by transfection of the cells with dominant-negative Ras or Raf or by pretreatment of cells with Raf kinase 1 inhibitor. The inhibition of Ras and Raf, as well as the inhibition of MAPK phosphorylation by PD98059, also prevented GHRH-induced cell proliferation. Finally, pretreatment of cells with the somatostatin analog, BIM23014, also prevented GHRH-induced MAPK phosphorylation and cell proliferation. These results indicate that GHRH stimulates dose-dependent cell proliferation of MDA-231 breast cancer cells through a pathway that requires Ras, Raf, and MAPK phosphorylation. The results also provide support for a possible autocrine/paracrine antagonism between GHRH and somatostatin in the regulation of MDA-231 cell population maintenance. Taken together, the studies provide further insight into the possible role of GHRH as a growth factor in breast cancer.  相似文献   

10.
One-third of women with breast cancer will develop bone metastases and eventually die from disease progression at these sites. Therefore, we analyzed the ability of human MG-63 osteoblast-like cells (MG-63 cells), MG-63 conditioned media (MG-63 CM), insulin-like growth factor I (IGF-I), and transforming growth factor beta 1 (TGF-beta1) to alter the effects of adriamycin on cell cycle and apoptosis of estrogen receptor negative (ER-) MDA-MB-231 and positive (ER+) MCF-7 breast cancer cells, using cell count, trypan blue exclusion, flow cytometry, detection of DNA fragmentation by simple agarose gel, and the terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method for apoptosis (TUNEL assay). Adriamycin arrested MCF-7 and MDA-MB-231 cells at G2/M phase in the cell cycle and inhibited cell growth. In addition, adriamycin arrested the MCF-7 cells at G1/G0 phase and induced apoptosis of MDA-MB-231 cells. Exogenous IGF-I partially neutralized the adriamycin cytotoxicity/cytostasis of cancer cells. MG-63 CM and TGF-beta1 partially neutralized the adriamycin cytotoxicity of MDA-MB-231 cells but enhanced adriamycin blockade of MCF-7 cells at G1/G0 phase. MG-63 osteoblast-like cells inhibited growth of MCF-7 cells while promoting growth and rescued MDA-MB-231 cells from adriamycin apoptosis in a collagen co-culture system. These data suggest that osteoblast-derived growth factors can alter the chemotherapy response of breast cancer cells. Conceivably, host tissue (bone)-tumor cell interactions can modify the clinical response to chemotherapy in patients with advanced breast cancer.  相似文献   

11.
Retinoids are currently being tested for the treatment and prevention of several human cancers, including breast cancer. However, the anti-cancer and growth inhibitory mechanisms of retinoids are not well understood. All-trans retinoic acid (RA) inhibits the growth of the estrogen receptor-positive (ER+) breast cancer cell line, MCF-7, in a reversible and dose-dependent manner. In contrast, insulin-like growth factors (IGF-I,IGF-II) and insulin are potent stimulators of the proliferation of MCF-7 and several other breast cancer cell lines. Pharmacologic doses of RA (≤10?6M) completely inhibit IGF-I-stimulated MCF-7 cell growth. Published data suggest that the growth inhibitory action of RA on IGF-stimulated cell growth is linear and dose-dependent, similar to RA inhibition of unstimulated or estradiol-stimulated MCF-7 cell growth. Surprisingly, we have found that IGF-I or insulin-stimulated cell growth is increased to a maximum of 132% and 127%, respectively, by cotreatment with 10?7 M RA, and that 10?9–10?7 M RA increase cell proliferation compared to IGF-I or insulin alone. MCF-7 cells that stably overexpress IGF-II are also resistant to the growth inhibitory effects of 10?9–10?7 M RA. Treatment with the IGF-I receptor blocking antibody, αIR-3, restores RA-induced growth inhibition of IGF-I-treated or IGF-II-overexpressing MCF-7 cells, indicating that the IGF-I receptor is mediating these effects. IGFs cannot reverse all RA effects since the altered cell culture morphology of RA-treated cells is similar in growth-inhibited cultures and in IGF-II expressing clones that are resistant to RA-induced growth inhibition. These results indicate that RA action on MCF-7 cells is biphasic in the presence of IGF-I or insulin with 10?9–10?7 M RA enhancing cell proliferation and ≥ 10?6M RA causing growth inhibition. As IGF-I and IGF-II ligands are frequently detectable in breast tumor tissues, their potential for modulation of RA effects should be considered when evaluating retinoids for use in in vivo experimental studies and for clinical purposes. Additionally, the therapeutic use of inhibitors of IGF action in combination with RA is suggested by these studies. © 1995 Wiley-Liss Inc.  相似文献   

12.
Lack of estrogen receptor (ER) and presence of vimentin (VIM) associate with poor prognosis in human breast cancer. We have explored the relationships between ER, VIM, and invasiveness in human breast cancer cell lines. In the matrigel outgrowth assay, ER+/VIM- (MCF-7, T47D, ZR-75-1), and ER-/VIM- (MDA-MB-468, SK-Br-3) cell lines were uninvasive, while ER-/VIM+ (BT549, MDA-MB-231, MDA-MB-435, MDA-MB-436, Hs578T) lines formed invasive, penetrating colonies. Similarly, ER-/VIM+ cell lines were significantly more invasive than either the ER+/VIM- or ER-/VIM- cell lines in the Boyden chamber chemoinvasion assay. Invasive activity in nude mice was only seen with ER-/VIM+ cell lines MDA-MB-231, MDA-MB-435 and MDA-MB-436. Hs578T cells (ER-/VIM+) showed hematogenous dissemination to the lungs in one of five mice, but lacked local invasion. The ER-/VIM+ MCF-7ADR subline was significantly more active than the MCF-7 cells in vitro, but resembled the wild-type MCF-7 parent in in vivo activity. Data from these cell lines suggest that human breast cancer progression results first in the loss of ER, and subsequently in VIM acquisition, the latter being associated with increased metastatic potential through enhanced invasiveness. The MCF-7ADR data provide evidence that this transition can occur in human breast cancer cells. Vimentin expression may provide useful insights into mechanisms of invasion and/or breast cancer cell progression.  相似文献   

13.
Cultured human mammary MCF7 and T47D tumor cell lines were used to test the interference of the partial antiestrogen 4′-hydroxytamoxifen (4-OH-TAM) and the pure antiestrogen ZM 182780 with growth factor (IGF-I, heregulin) signaling pathways. Growth of both cell lines was stimulated by IGF-I (20 ng/ml) or heregulin (3 nM). ZM 182780 effectively blocked growth factor induced as well as basal proliferation of MCF7 cells while the compound was ineffective in interfering with growth factor mitogenic activity in T47D cells. On both cell lines the IGF-I or heregulin- induced proliferation was enhanced further by 4-OH-TAM. This synergism could be inhibited dose-dependently by ZM 182780. When cells were grown in the presence of estradiol plus growth factors, the antiestrogenic potencies of both compounds and the efficacy of ZM 182780 were unaffected, while the efficacy of 4-OH-TAM was reduced. Our data show cell type specific cross-talk between the receptor for estrogen and that for IGF-I or heregulin, which is different in MCF7 and T47D cells, respectively. In MCF7 cells with demonstrable cross-talk, a clear superiority exists for a pure antiestrogen over a partial agonist in interfering with growth factor mitogenic activity.  相似文献   

14.
Heregulin regulation of Akt/protein kinase B in breast cancer cells.   总被引:3,自引:0,他引:3  
In the present studies, we demonstrate that heregulin is a potent and rapid activator of the serine/threonine kinase called Akt in the MCF-7 breast cancer cell line but not in 3 other breast cancer cell lines (T47D, HBL-100, and MDA-231). The extent of activation of Akt in the 4 cell lines correlated with the ability of heregulin to activate phosphatidylinositol 3-kinase and inhibition of the kinase blocked Akt activation. A monoclonal antibody to HER2 inhibited the ability of heregulin to activate Akt in the MCF-7 cells. BT474, a breast cancer cell line which overexpresses HER2, had high basal Akt enzymatic activity. This high basal activity was lowered when cells were pre-incubated with an anti-HER2 monoclonal antibody which is used to treat breast cancer patients. Our results indicate that heregulin is a potent activator of Akt and that overexpression of HER2 in breast cancers could also lead to activation of Akt.  相似文献   

15.
Mitogen-activated protein (MAP) kinase mediates cell proliferation, cell differentiation, and cell survival by regulating signaling pathways activated by receptor protein tyrosine kinases (RPTKs), including the insulin-like growth factor 1 receptor (IGF-IR). We analyzed the upstream signaling components of the MAP kinase pathway, including RPTKs, in human breast cancer cell lines and found that some of those components were overexpressed. Importantly, signaling molecules such as IGF-IR, insulin receptor, and insulin receptor substrate 1, leading to the MAP kinase pathway, were found to be concomitantly overexpressed within certain tumor lines, i.e., MCF-7 and T-47D. When compared with the nonmalignant and other breast tumor lines examined, MCF-7 and T-47D cells displayed a more rapid, robust, and sustained MAP kinase activation in response to insulin-like growth factor I (IGF-I) stimulation. By contrast, IGF-I treatment led to a sustained down-regulation of MAP kinase in those lines overexpressing ErbB2-related RPTKs. Interestingly, blocking the MAP kinase pathway with PD098059 had the greatest antiproliferative effect on MCF-7 and T-47D among the normal and tumor lines tested. Furthermore, addition of an IGF-IR blocking antibody to growth medium attenuated the ability of PD098059 to suppress the growth of MCF-7 and T-47D cells. Thus, our study suggests that concomitant overexpression of multiple signaling components of the IGF-IR pathway leads to the amplification of IGF-I-mediated MAP kinase signaling and resultant sensitization to PD098059. The enhanced sensitivity to PD098059 implies an increased requirement for the MAP kinase pathway in those breast cancer cells, making this pathway a potential target in the treatment of selected breast malignancies.  相似文献   

16.
17.
We have studied the regulation by estradiol of the mannose-6-phosphate (Man-6-P)/insulin-like growth factor-II (IGF-II) receptor concentration in different breast cancer cell lines. The mRNA level was assayed by Northern blot using the H5.1 cDNA probe. The protein level was assayed by Western ligand blot, by binding saturation with [125I]procathepsin-D on total membrane preparations, and by immunoprecipitation of 35S-labeled proteins. In three estrogen receptor-positive cell lines (MCF7, T47D, and ZR75-1), estradiol specifically decreased the steady state level of the Man-6-P/IGF-II receptor protein and mRNA. Moreover, in different cell lines and in primary culture of normal mammary cells, the secretion of procathepsin-D was inversely correlated with the level of Man-6-P/IGF-II receptor protein and mRNA. We conclude that estradiol down-regulates the Man-6-P/IGF-II receptor in breast cancer cells. Since two of its ligands, procathepsin-D and IGF-II, are induced by estrogen, we propose that the Man-6-P/IGF-II receptor becomes saturated after estrogen treatment. This model might explain the previously described estrogen-induced secretion of procathepsin-D and other lysosomal proenzymes routed by the same transport system.  相似文献   

18.
We previously demonstrated that expression of IGF-II modulates the routing of cathepsin D in MCF-7 cells. In our present study, we transfected antisense IGF-II into IGF-II secreting MCF-7 cells to test the hypothesis that blocking IGF-II may reduce the secretion of cathepsin D in breast cancer cells. The concentration of IGF-II in media conditioned by the antisense clone was reduced to almost undetectable levels. Likewise, Northern blotting analysis revealed that IGF-II mRNA was nearly undetectable in the antisense transfected cells. Metabolic labeling experiments performed with 10 mM mannose 6-phosphate present in the medium to block reuptake of lysosomal enzymes demonstrated that cathepsin D secretion was dramatically reduced. Similarly, a significant reduction in cathepsin D was observed when conditioned media and cell extracts were examined by Western blotting after a 48 h incubation. No changes in cathepsin D mRNA in antisense cells were detected by Northern blot analysis. We conclude that endogenous IGF-II may modulate the routing of cathepsin D by interfering with receptor trafficking in MCF-7 cells, and that this modulation is reversible. Abnormally high levels of IGF-II may alter this homeostasis, conferring on breast cancer cells an advantageous mechanism that promotes rapid growth, and may facilitate metastasis.  相似文献   

19.
We investigated binding characteristics of basic fibroblast growth factor (bFGF) on membranes prepared from 4 human breast cancer cell lines and 38 primary BC biopsies. Competitive binding experiments were performed and analyzed using the "Ligand" program. Furthermore bFGF mitogenic activity was measured by [3H]thymidine incorporation into DNA from breast cancer cell lines. The presence of high-affinity binding sites was demonstrated in each cell type (MCF-7: Kd = 0.60 nM; T-47D: Kd = 0.55 nM; BT-20: Kd = 0.77 nM; MDA-MB-231: Kd = 0.34 nM). The presence of these high-affinity binding sites was confirmed with saturation experiments. A second class of low-affinity binding sites was detected in the 2 hormone-independent cells (BT-20: Kd = 2.9 nM; MDA-MB-231: Kd = 2.7 nM). bFGF stimulated the proliferation of MCF-7, T-47D, BT-20 but not MDA-MB-231 cell lines. With competition experiments, binding sites were detectable in 36/38 breast cancers; high-affinity binding sites (Kd less than 1 nM) were present in 19/36 cases and low-affinity binding sites (Kd greater than 2 nM) were present in 29/36 cases (the two classes of binding sites were present in 12 breast cancers). No relation between bFGF binding sites and node involvement, histologic type or grading of the tumor was evidenced. There were negative correlations (Spearman test) between total bFGF binding sites and estradiol receptor (P = 0.05) or progesterone receptor (P = 0.009). The demonstration of (1) bFGF specific binding sites in breast cancer membranes, and (2) bFGF growth stimulation of some breast cancer cell lines indicates that this factor may be involved directly in the growth of some breast cancers.  相似文献   

20.
Studies of binding of IGF-I to a plasma-membrane-enriched subcellular fraction prepared from MCF-7 human breast cancer cells reveal the presence of 0.2 pmols specific binding sites for this mitogen per mg membrane protein, with an equilibrium affinity constant of 1.45 nM-1. Competition studies with insulin, IGF-II, and an anti-IGF-I receptor antibody are consistent with the presence of specific IGF-I receptors, and SDS-PAGE showed binding to a 130 kDa subunit identical to that of receptors from human placenta. In addition, we show that IGF-I is more potent than estradiol and comparable to EGF in stimulating in vitro proliferation of MCF-7 cells, and that IGF-I-stimulated proliferation of these cells is inhibited by a blocking monoclonal antibody against the IGF-I receptor. These results demonstrate that IGF-I is an important mitogen for MCF-7 cells and that the mitogenic effect is mediated by specific IGF-I receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号