首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor-I (IGF-I) receptors are present in breast cancer cells and may play a role in breast cancer cell growth. We have studied the effect of progestins on IGF-I receptors in T47D human breast cancer cells. T47D cells constitutively express high levels of progesterone receptors and are a model for studying the regulation of cellular functions by progestins. Treatment of T47D cells with either progesterone or the synthetic progestin promegestone (R5020) decreased IGF-I receptor content by approximately 50%, as measured by Scatchard analysis and receptor biosynthesis studies. In contrast to progestins, estradiol, dexamethasone, and dihydrotestosterone did not influence IGF-I receptor content. No effect of R5020 was seen after 12 h of incubation, a near-maximal effect was seen after 24 h, and greatest effects were seen after 72 h. R5020 decreased IGF-I receptor mRNA abundance, indicating that progestins acted at the level of gene expression. However, progestins also increased the secretion of IGF-II, a ligand for the IGF-I receptor. In contrast to IGF-II, T47D cells did not express IGF-I. The addition of exogenous IGF-II to T47D cells down-regulated both IGF-I receptor binding and IGF-I receptor mRNA abundance. This study indicates, therefore, that progestins regulate IGF-I receptors in breast cancer cells and suggests that this regulation occurs via an autocrine pathway involving enhanced IGF-II secretion.  相似文献   

2.
3.
The lysosomal enzyme cathepsin-D (cath-D) and insulin-like growth factor-II (IGF-II), which share a common IGF-II/mannose-6-phosphate (M6P) transmembrane receptor, are both synthesized and secreted by breast cancer cells, upon which they might exert an intracrine/autocrine control on proliferation. We have evaluated the binding of 125I-immunopurified human cath-D in different breast cell membrane preparations. The concentration of high affinity M6P reversible binding sites (mean Kd, 0.85 nM) varied among the different breast cancer cells (0-0.82 pmol/mg membrane protein), but there was no correlation between the presence of steroid receptor and M6P-dependent binding. Cross-linking experiments with [125I]cath-D and [125I]IGF-II showed the formation of complexes with the 270,000 mol wt IGF-II/M6P receptor molecule which migrated, respectively, at 330,000 and 270,000 mol wt in 3-10% gradient sodium dodecyl sulfate-polyacrylamide gels. [125I]IGF-II cross-linking was increased by M6P (20% above control), whereas cath-D strongly inhibited IGF-II interaction by 80%. Conversely, IGF-II reduced [125I]cath-D cross-linking by 55%. Direct ligand binding on receptors transferred onto nitrocellulose sheets by Western blotting confirmed the interaction of both ligands on the same receptor molecule. By studying IGF-II's growth-promoting activity in these cells in a wide range of concentrations, we show that IGF-II triggers its mitogenic response via IGF-II/M6P receptor at low concentrations, whereas it is mainly acting via IGF-I receptor at high concentrations. Three lines of evidences lead us to that conclusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Evidence that granulosa cells secrete and respond to insulin-like growth factors (IGFs) suggests, but does not prove, the importance of IGFs as intraovarian regulators. To further assess the role of these peptides in ovarian function, a neutralizing monoclonal antibody to IGF-I was employed to block the actions of IGFs in porcine follicular fluid and in granulosa cell-conditioned medium. In one series of experiments, granulosa cells from immature porcine follicles were cultured in medium containing porcine follicular fluid that had been charcoal-treated to remove steroids. As noted before, fluid from large follicles (LFF) stimulated progesterone production in a dose-dependent manner. The stimulatory effect of LFF (30% v/v) could be inhibited by greater than 50% by the anti-IGF monoclonal antibody. This inhibitory action was specific for the anti-IGF antibody and could be overcome by the addition of excess exogenous IGFs. In another series of experiments, granulosa cells were made dependent on endogenously produced IGFs by culturing them in a serum-free medium without exogenous growth factors. The effects of follicle-stimulating hormone (FSH), estradiol (E2), growth hormone (GH), and combinations thereof on progesterone production were inhibited by approximately 50% by the anti-IGF antibody. The effects of IGFs on indices of cell growth (judged by the criterion of being inhibited by the anti-IGF antibody) were less dramatic. A modest 18% increase in cell number was observed with FSH and E2 treatment in serum-free medium; this effect was virtually abolished by the antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The insulin-like growth factor-II/cation-independent mannose 6-phosphate (IGF-II/M6P) receptor transduces signals after binding IGF-II or M6P-bearing growth factors. We hypothesized that this receptor relays paracrine signals between Sertoli cells and spermatogonia in the basal compartment of the seminiferous epithelium. For these studies spermatogonia were isolated from 8-day-old mice with purity >95% and viability >85% after overnight culture. The IGF-II/M6P receptors were present on the surface of spermatogonia, as detected by indirect immunofluorescence. We determined that both IGF-II and M6P-glycoproteins in Sertoli cell conditioned medium (SCM) modulate gene expression in isolated spermatogonia. The IGF-II produced dose-dependent increases in both rRNA and c-fos mRNA. These effects were mediated specifically by IGF-II/M6P receptors, as shown by studies using IGF-II analogues that are specific agonists for either IGF-I or IGF-II receptors. The SCM treatment also induced dose-dependent increases in rRNA levels, and M6P competition showed that this response required interaction with IGF-II/M6P receptors. The M6P-glycoproteins isolated from SCM by IGF-II/M6P receptor affinity chromatography increased spermatogonial rRNA levels at much lower concentrations than required by SCM treatment, providing further evidence for the paracrine activity of Sertoli M6P-glycoproteins. These results demonstrate that Sertoli cells secrete paracrine factors that modulate spermatogonial gene expression after interacting with cell-surface IGF-II/M6P receptors.  相似文献   

6.
The insulin-like growth factor-II/mannose 6-phosphate receptor which targets acid hydrolases to lysosomes, has two different binding sites, one for the mannose 6-phosphate (Man-6-P) recognition marker on lysosomal enzymes and the other for insulin-like growth factor-II (IGF-II). We have asked whether IGF-II can regulate the cellular uptake of the lysosomal enzyme 125I-beta-galactosidase by modulating the binding of 125I-beta-galactosidase to the IGF-II/Man-6-P receptor. We first isolated high affinity 125I-beta-galactosidase by affinity chromatography on an IGF-II/Man-6-P receptor-Sepharose column. Specific uptake (mannose 6-phosphate-inhibitable) of 125I-beta-galactosidase in BRL 3A2 rat liver cells and in rat C6 glial cells was 3.7-4.8 and 4.0-8.0% of added tracer, respectively. The cell-associated 125I-beta-galactosidase in the uptake experiments largely represented internalized radioligand as measured by acid or mannose 6-phosphate washing. The uptake of 125I-beta-galactosidase was inhibited by an antiserum (No. 3637) specific for the IGF-II/Man-6-P receptor. Low concentrations of IGF-II also inhibited the uptake of 125I-beta-galactosidase. Maximal concentrations of IGF-II inhibited uptake by 73 +/- 8% (mean +/- S.D.) in C6 cells and by 77 +/- 6% in BRL 3A2 cells compared to the level of inhibition by mannose 6-phosphate. The relative potency of IGF-II, IGF-I, and insulin (IGF-II much greater than IGF-I; insulin, inactive) were characteristic of the relative affinities of the ligands for the IGF-II/Man-6-P receptor. IGF-II also partially inhibited the binding of 125I-beta-galactosidase to C6 and BRL 3A2 cells at 4 degrees C and inhibited the binding to highly purified IGF-II/Man-6-P receptor by 58 +/- 14%. We conclude that IGF-II inhibits the cellular uptake of 125I-beta-galactosidase and that this inhibition is partly explained by the ability of IGF-II to inhibit binding of 125I-beta-galactosidase to the IGF-II/Man-6-P receptor.  相似文献   

7.
The mammalian insulin-like growth factor (IGF)-II/cation-independent mannose 6-phosphate receptor (IGF2R) binds IGF-II with high affinity. By targeting IGF-II to lysosomal degradation, it plays a role in the maintenance of correct IGF-II levels in the circulation and in target tissues. Loss of IGF2R function is associated with tumor progression; therefore, the IGF2R is often referred to as a tumor suppressor. The interaction between IGF2R and IGF-II involves domains 11 and 13 of the 15 extracellular domains of the receptor. Recently, a hydrophobic binding region was identified on domain 11 of the IGF2R. In contrast, relatively little is known about the residues of IGF-II that are involved in IGF2R binding and the determinants of IGF2R specificity for IGF-II over the structurally related IGF-I. Using a series of novel IGF-II analogues and surface plasmon resonance assays, this study revealed a novel binding surface on IGF-II critical for IGF2R binding. The hydrophobic residues Phe(19) and Leu(53) are critical for IGF2R binding, as are residues Thr(16) and Asp(52). Furthermore, Thr(16) was identified as playing a major role in determining why IGF-II, but not IGF-I, binds with high affinity to the IGF2R.  相似文献   

8.
Muscle is an important target tissue for insulin-like growth factor (IGF) action. We have previously reported that muscle cell differentiation is associated with down-regulation of the IGF-I receptor at the level of gene expression that is concomitant with an increase in the expression and secretion of IGF-II. Furthermore, treatment of myoblasts with IGF-II resulted in a similar decrease in IGF-I receptor mRNA abundance, suggesting an autocrine role of IGF-II in IGF-I receptor regulation. To explore further the role of IGF-II in IGF-I receptor regulation, BC3H-1 mouse muscle cells were exposed to differentiation medium in the presence of basic fibroblast growth factor (FGF), a known inhibitor of myogenic differentiation. FGF treatment of cells resulted in a 50% inhibition of IGF-II gene expression compared to that in control myoblasts and markedly inhibited IGF-II secretion. Concomitantly, FGF resulted in a 60-70% increase in IGF-I binding compared to that in control myoblasts. Scatchard analyses and studies of gene expression demonstrated that the increased IGF-I binding induced by FGF reflected parallel increases in IGF-I receptor content and mRNA abundance. These studies indicate that FGF may up-regulate IGF-I receptor expression in muscle cells through inhibition of IGF-II peptide expression and further support the concept of an autocrine role of IGF-II in IGF-I receptor regulation. In addition, these studies suggest that one mechanism by which FGF inhibits muscle cell differentiation is through inhibition of IGF-II expression.  相似文献   

9.
Abstract. Regulation of the growth of breast cancer cells is the result of a complex interaction between steroid hormones and growth factors, and in particular of oestrogen and insulin-like growth factors (IGF). Alteration of any one mitogenic component can affect the cell response to other pathways. Previous work has shown that increased autocrine production of IGF-II from a transfected inducible expression vector can result in reduced oestrogen sensitivity of growth of MCF-7 human breast cancer cells. This report describes alterations to non-oestrogen regulated pathways of cell growth following enhanced IGF-II expression in these transfected MI7 cells. Serum sensitivity of cell growth in the absence of oestrogen was found to differ between MI7 and untransfected MCF-7 cells, in that growth of MI7 but not MCF-7 cells was strongly inhibited by high serum levels. Increased serum had no effect on levels of IGF-II mRNA, IGFIR, IGFBP4 mRNA, or IGFBP secreted in MI7 cells. However, growth inhibition by serum in MI7 cells could be overcome by increasing levels of IGF-II in the serum or by removal of IGFBP onto polycarbonate membranes. Thus, the growth inhibition by serum in MI7 cells is concluded to result from the increased levels of IGFBP added with higher serum. This would support an inhibitory role for IGFBP on growth of breast cancer cells when cell growth is being driven by IGF pathways in the absence of oestrogen, and would suggest that cellular sensitivity to such factors can depend on levels of endogenous IGF production.  相似文献   

10.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) can stimulate apoptosis and inhibit cell proliferation directly and independently of binding IGFs or indirectly by forming complexes with IGF-I and IGF-II that prevent them from activating the IGF-I receptor to stimulate cell survival and proliferation. To date, IGF-independent actions only have been demonstrated in a limited number of cells that do not synthesize or respond to IGFs. To assess the general importance of IGF-independent mechanisms, we have generated human IGFBP-3 mutants that cannot bind IGF-I or IGF-II by substituting alanine for six residues in the proposed IGF binding site, Ile(56)/Tyr(57)/Arg(75)/Leu(77)/Leu(80)/Leu(81), and expressing the 6m-hIGFBP-3 mutant construct in Chinese hamster ovary cells. Binding of both IGF-I and IGF-II to 6m-hIGFBP-3 was reduced >80-fold. The nonbinding 6m-hIGFBP-3 mutant still was able to inhibit DNA synthesis in a mink lung epithelial cell line in which inhibition by wild-type hIGFBP-3 previously had been shown to be exclusively IGF-independent. 6m-hIGFBP-3 only can act by IGF-independent mechanisms since it is unable to form complexes with the IGFs that inhibit their action. We next compared the ability of wild-type and 6m-hIGFBP-3 to stimulate apoptosis in serum-deprived PC-3 human prostate cancer cells. PC-3 cells are known to synthesize and respond to IGF-II, so that IGFBP-3 could potentially act by either IGF-dependent or IGF-independent mechanisms. In fact, 6m-hIGFBP-3 stimulated PC-3 cell death and stimulated apoptosis-induced DNA fragmentation to the same extent and with the same concentration dependence as wild-type hIGFBP-3. These results indicate that IGF-independent mechanisms are major contributors to IGFBP-3-induced apoptosis in PC-3 cells and may play a wider role in the antiproliferative and antitumorigenic actions of IGFBP-3.  相似文献   

11.
Recent in situ hybridization experiments have shown a high content of IGF-II mRNA in breast cancer stroma. The aim of this study was to examine the relationship between IGF-II protein expression and several prognostic parameters in 75 infiltrating ductal carcinomas (IDC) of the breast. Tissue sections were evaluated for proliferative activity, IGF-II protein, ER, PgR, p53, and p21 expression using immunohistochemical procedures. The degree of stromal proliferation was assessed. Menopausal status, axillary lymph node involvement and nuclear grade were known. Thirty-five patients (44.3%) were premenopausal and 47 (62.6%) had lymph node metastases. Marked stromal proliferation was found in 34 (45.3%) specimens and high nuclear grade in 20 (26.5%). Eighteen tumors (24%) showed no IGF-II immunostaining. In the positive cases, IGF-II was detected both in the tumor stroma and in the cytoplasm of epithelial cancer cells: a high IGF-II content was found in 12 specimens (16.0%), a low content in 14 (18.7%) and a moderate content in 31 (41.3%). Twenty-four tumors (32.0%) showed high proliferative activity. Both ER and PgR were expressed in the nucleus of cancer cells: 49 tumors (65.3%) were ER positive (ER+) and 34 (45.3%) PgR positive (PgR+). p21 protein was detected in 37 tumors (49.6%) and p53 in 12 (16%). IGF-II protein was not correlated with menopausal status, lymph node metastases, nuclear grade, proliferative activity, ER or p53. In contrast, IGF-II correlated strongly with stromal proliferation (p=0.008), PgR (p=0.03) and p21 (p=0.01). This study demonstrates that in IDC of the breast IGF-II protein is expressed in the epithelium and stroma of the majority of tumors and is correlated with stromal amount, PgR and p21 expression. These preliminary results indicate that IGF-II expression in breast cancer is connected with two important regulators of breast cancer growth and differentiation.  相似文献   

12.
Five mutants of recombinant insulin-like growth factor-II (rIGF-II) that bound with high affinity to either the IGF-II/cation-independent mannose 6-phosphate (IGF-II/CIM6-P) or the IGF-I receptor were prepared by site-directed mutagenic procedures, expressed as fusion proteins in the larva of Bombyx mori or Escherichia coli, purified to homogeneity, renatured, and characterized in terms of their receptor binding affinities and specificities as well as their biological activities. Class I mutants in which Phe26, Tyr27, and Val43 were substituted with Ser, Leu, and Leu, respectively, bound to enriched preparations of rat placental IGF-II/CIM6-P receptors with apparent equilibrium dissociation constants (Kd(app)) that were only slightly greater, i.e. 0.10, 0.05, and 0.06 nM, than that of rIGF-II (0.04 nM) or hIGF-II (0.03 nM). In contrast, replacing Phe26 with Ser resulted in 5- and 20-fold decreases in the affinities of this mutant for highly purified human placental IGF-I and insulin receptors, respectively. The affinities of the two other Class I mutants, [Leu27]- and [Leu43]rIGF-IIs, for these two receptors were reduced 80- to 220-fold. The affinities of Class II mutants, i.e. [Thr48,Ser49,Ile50]- and [Arg54,Arg55] rIGF-IIs, for IGF-I receptors were as potent as rIGF-II; however, they bound very poorly or not at all to the IGF-II/CIM6-P receptor. In the binding study of those mutant rIGF-IIs, IGF-II was observed to have an unexpectedly high affinity for pure human placental insulin receptor preparations. For example, the affinities of hIGF-II, rIGF-II, and two Class II rIGF-II mutants for the insulin receptor were only 3-, 9-, and 5-fold less, respectively, than that of porcine insulin. In two biological assay systems, i.e. the stimulation of DNA synthesis in Balb/c 3T3 cells and glycogen synthesis in HepG2 cells, the Kd(app) of the rIGF-II mutants for the IGF-I receptor but not the IGF-II/CIM6-P receptor correlated with their abilities to produce biological responses.  相似文献   

13.
14.
In blood, circulating IGFs are bound to six high-affinity IGFBPs, which modulate IGF delivery to target cells. Serum IGFs and IGFBP-3, the main carrier of IGFs, are upregulated by GH. The functional role of serum IGFBP-3-bound IGFs is not well understood, but they constitute the main reservoir of IGFs in the circulation. We have used an equation derived from the law of mass action to estimate serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II, as well as serum free IGF-I and free IGF-II, in 129 control children and adolescents (48 girls and 81 boys) and in 13 patients with GHD. Levels of serum total IGF-I, total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 were determined experimentally, while those of IGFBP-4, IGFBP-5 and IGFPB-6, as well as the 12 affinity constants of association of the two IGFs with the six IGFBPs, were taken from published values. A correction for in vivo proteolysis of serum IGFBP-3 was also considered. In controls, serum total IGF-I, total IGF-II, IGFBP-3, IGFBP-3-bound IGF-I, IGFBP-3-bound IGF-II and free IGF-I increased linearly with age, from less than 1 to 15 years, in the two sexes. The concentrations of serum free IGF-I and free IGF-II were approximately two orders of magnitude below published values, as well as below the affinity constant of association of IGF-I with the type-1 IGF receptor. Therefore, it is unlikely that these levels can interact with the receptor. In the 13 patients with GHD, mean (+/- SD) SDS of serum IGFBP-3-bound IGF-I was -2.89 +/- 0.97. It was significantly lower than serum total IGF-I, free IGF-I or IGFBP-3 SDSs (-2.35 +/- 0.83, -1.12 +/- 0.78 and -2.55 +/- 1.07, respectively, p = 0.0001). The mean SDS of serum total IGF-II, IGFBP-3-bound IGF-II and free IGF-II were -1.25 +/- 0.68, -2.03 +/- 0.87 and 0.59 +/- 1.10, respectively, in GHD. In control subjects, 89.8 +/- 4.47% of serum total IGF-I and 77.3 +/- 9.4% of serum total IGF-II were bound to serum IGFBP-3. In patients with GHD, the mean serum IGFBP-3-bound IGF-I and IGFBP-3-bound IGF-II were 8.63 +/- 8. 53 and 19.1 +/- 14.7% below the respective means of control subjects (p < 0.02). In conclusion, in GHD there was a relative change in the distribution of serum IGFs among IGFBPs, due to the combined effects of the decrease in both total IGF-I and IGFBP-3. As a result, serum IGFBP-3-bound IGF-I and IGFBP-3 bound IGF-II, the main reservoirs of serum IGFs, were severely affected. This suggests that the decrease in serum IGFPB-3-bound IGF-I and IGFBP-3-bound IGF-II might have a negative effect for growth promotion and other biological effects of IGF-I and IGF-II. Finally, the estimation of serum IGFBP-3-bound IGF-I, or the percentage of total IGF-I and IGF-II bound to IGFBP-3, might be useful markers in the diagnosis of GHD.  相似文献   

15.
16.
17.
Several lines of growth hormone (GH)-overexpressing fish have been produced and analysed for growth and fertility parameters. However, only few data are available on the growth-promoting hormone insulin-like growth factor I (IGF-I) that mediates most effects of GH, and these are contradictory. Using quantitative real-time RT-PCR, radioimmunoassay, in situ hybridization, immunohistochemistry, and radiochromatography we investigated IGF-I and IGF binding proteins (IGFBPs) in an adult (17 months old) transgenic (GH-overexpressing) tilapia (Oreochromis niloticus). The transgenics showed an around 1.5-fold increase in length and an approximately 2.3-fold higher weight than the non-transgenics. Using radioimmunoassay, the serum IGF-I levels were lower (6.22 ± 0.75 ng/ml) in transgenic than in wild-type (15.01 ± 1.49 ng/ml) individuals (P = 0.0012). Radioimmunoassayable IGF-I in transgenic liver was 4.2-times higher than in wild-type (16.0 ± 2.21 vs. 3.83 ± 0.71 ng/g, P = 0.0017). No hepatocytes in wild-type but numerous hepatocytes in transgenic liver contained IGF-I-immunoreactivity. RT-PCR revealed a 1.4-times higher IGF-I mRNA expression in the liver of the transgenics (10.51 ± 0.82 vs. 7.3 ± 0.49 pg/μg total RNA, P = 0.0032). In correspondence, in situ hybridization showed more IGF-I mRNA containing hepatocytes in the transgenics. A twofold elevated IGF-I mRNA expression was determined in the skeletal muscle of transgenics (0.33 ± 0.02 vs. 0.16 ± 0.01 pg/μg total RNA, P < 0.0001). Both liver and serum of transgenics showed increased IGF-I binding. The increased IGFBP content in the liver may lead to retention of IGF-I, and/or the release of IGF-I into the circulation may be slower resulting in accumulation of IGF-I in the hepatocytes. Our results indicate that the enhanced growth of the transgenics likely is due to enhanced autocrine/paracrine action of IGF-I in extrahepatic sites, as shown here for skeletal muscle.  相似文献   

18.
Ghrelin is a recently identified 28 amino acid peptide capable of stimulating pituitary growth hormone release in humans. The actions of ghrelin are mediated via the naturally occurring ghrelin receptor, also known as the growth hormone secretagogue receptor (GHS-R). Ghrelin and its receptors are now being recognized as components of the growth hormone axis and are therefore potentially involved in tissue growth and development. As is the case for other members of this axis, evidence is rapidly emerging to indicate that ghrelin/GHS-R may play an important autocrine/paracrine role in some cancers. This review highlights the evidence for the expression, regulation and potential functional role of ghrelin and its receptor in hormone-dependent cancers, such as prostate and breast cancer.  相似文献   

19.
Studies of binding of IGF-I to a plasma-membrane-enriched subcellular fraction prepared from MCF-7 human breast cancer cells reveal the presence of 0.2 pmols specific binding sites for this mitogen per mg membrane protein, with an equilibrium affinity constant of 1.45 nM-1. Competition studies with insulin, IGF-II, and an anti-IGF-I receptor antibody are consistent with the presence of specific IGF-I receptors, and SDS-PAGE showed binding to a 130 kDa subunit identical to that of receptors from human placenta. In addition, we show that IGF-I is more potent than estradiol and comparable to EGF in stimulating in vitro proliferation of MCF-7 cells, and that IGF-I-stimulated proliferation of these cells is inhibited by a blocking monoclonal antibody against the IGF-I receptor. These results demonstrate that IGF-I is an important mitogen for MCF-7 cells and that the mitogenic effect is mediated by specific IGF-I receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号