首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplast glutathione reductase: Purification and properties   总被引:4,自引:0,他引:4  
Glutathione reductase was partially purified from isolated pea chloroplasts ( Pisum sativum L. cv. Progress #9). A 1600-fold purification was obtained and the purified enzyme had a specific activity of 26 μmol NADPH oxidized (mg protein)−1 min−1. The enzyme had a native molecular weight of approximately 156 kdalton and consisted of two each of two subunits of about 41 and 42 kdalton. The Km for oxidized glutathione was 11 μ M and the Km for NADPH was 1.7 μ M . Enzyme activity was affected by the ionic strength of the assay medium, and maximum activity was observed at an ionic strength of between 60 and 100 m M . The enzyme was inactivated by sulfhydryl modifying reagents and the presence of either oxidized glutathione or NADPH affected the extent of inactivation. Chloroplast glutathione reductase probably serves in the removal of photosynthetically derived H2O2 by reducing dehydroascorbate for ascorbate-linked reduction of H2O2. Intermediates of this reaction sequence, dehydroascorbate, ascorbate, reduced glutathione, and NADPH had no effect on enzymic activity.  相似文献   

2.
Highly active superoxide (O2-)-forming NADPH oxidase was extracted from plasmamembranes of phorbol-12-myristate-13-acetate-activated pig neutrophils and was partially purified by gel filtration chromatography. Oxidase activity copurified with cytochrome b-245 in an aggregate containing phospholipids and was almost completely separated from FAD and NAD(P)H-cytochrome c reductase. A polypeptide with molecular weight of 31,500 strictly paralleled the purification of NADPH oxidase, suggesting that it is a major component of the enzyme. The enzyme complex was then dissociated by high detergent and salt concentration and cytochrome b-245 was isolated by a further gel filtration chromatography, with a 147 fold purification with respect to the initial preparation. The cytochrome b-245 showed a 31,500 molecular weight by SDS electrophoresis, indicating that it is actually the component previously identified in the partially purified enzyme. The 31,500 protein was phosphorylated in enzyme preparations from activated but not from resting neutrophils, suggesting that phosphorylation of cytochrome b-245 is involved in the activation mechanism of the O2--forming enzyme responsible for the respiratory burst in phagocytes.  相似文献   

3.
Abstract NADP+-dependent glutamate dehydrogenase (GDH; EC 1.4.1.4) was purified using acetone precipitation, heat, DEAE-cellulose and dye-ligand Ramazol Red column chromatography. The M r of the native enzyme was estimated to be 380 000 (± 10 000) by polyacrylamide gel electrophoresis. The same technique in the presence of sodium dodecyl sulphate (SDS) gave one subunit band with an M r of 63 400 (±4000). Thus the enzyme has a hexameric structure. The enzyme has a pH optimum of 8.5 and has K m apparent values of 1.6 mM, 0.015 mM and 10.2 mM for α-ketoglutarate, N NADPH and L -glutamate, respectively. Michaelis-Menten kinetics were not observed when the ammonium concentration was increased. A progressive increase in the ammonium concentration resulted in a progressively increasing K m value. The enzyme was highly specific for all substrates and markedly insensitive to inhibitors.  相似文献   

4.
Abstract: A Ca2+- and calmodulin-dependent protein kinase was purified from rat brain cytosol fraction to apparent homogeneity at approximately 800-fold and with a 5% yield. The purified enzyme had a molecular weight of 640,000 as determined by gel filtration analysis on Sephacryl S-300 and a sedimentation coefficient of 15.3 S by sucrose density gradient centrifugation, and resulted in a single protein band of MW 49,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the native enzyme has a large molecular weight and consists of 11 to 14 identical subunits. The purified enzyme exhibited K m values of 109 and 30 μM for ATP and chicken gizzard myosin light chain, respectively, and K a values of 12 n M and 1.9 μM for brain calmodulin and Ca2+, respectively. In addition to myosin light chain, myelin basic protein, casein, arginine-rich histone, microtubule protein, and synaptosomal proteins were phosphorylated by the enzyme in a Ca2+- and calmodulin-dependent manner. The purified enzyme was phosphorylated without the addition of the catalytic subunit of cyclic AMP-dependent protein kinase. Our findings indicate that there is a multifunctional Ca2+- and calmodulin-dependent protein kinase in the brain and that this enzyme may regulate the reactions of various endogenous proteins.  相似文献   

5.
An acid phosphatase (EC 3.1.3.2) has been identified and purified from castor bean ( Ricinus communis L., IAC-80 ) seed through sulphopropyl (SP)-Sephadex, diethylaminoethyl (DEAE)-Sephadex, Sephacryl S-200, and Concanavalin A-Sepharose chromatography. The enzyme was purified 2 000-fold to homogeneity, with a final specific activity of 3.8 μkat mg−1 protein. The purified enzyme revealed a single diffuse band with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis, at pH 8.3. The relative molecular mass, determined by high-performance liquid chromatography (HPLC), was found to be 60 kDa. The acid phosphatase had a pH optimum of 5.5 and an akpparent Km value for p -nitrophenylphosphate of 0.52 m M . The enzyme-catalyzed reaction was inhibited by inorganic phosphate, fluoride, vanadate, molybdate, p -chloromercuribenzoate ( p CMB), Cu2+ and Zn2+. The strong inhibition by p CMB, Cu2+ and vanadate suggests the presence of sulfhydryl groups essential for catalysis. The castor bean enzyme also recognized tyrosine-phosphate and inorganic pyrophosphate (KPPi) as substrate. The highest specificity constant (Vmax/Km) was observed with KPPi, making it a potential physiological substrate.  相似文献   

6.
The yeast Torulaspora delbrueckii IFO 1255 was selected as the strain fermenting melibiose from 35 strains of Torulaspora species. The strain IFO 1255 produced extracellular and cell-associated forms of α-galactosidase when grown on either melibiose or galactose as the sole carbon source. Most of the enzyme was located outside of the cell membrane: the periplasmic space, or cell walls, or both. α-Galactosidase was purified to homogeneity from the cell-free extract of the strain IFO 1255 by acid treatment and column chromatography on DEAE-Toyopearl 650M and Butyl-Toyopearl 650M. The molecular weight of the purified enzyme was estimated to be 88 000 by SDS-polyacrylamide gel electrophoresis and 530 000 by gel filtration. The enzyme contained 50% of its molecular weight as carbohydrate. Optimum pH and temperature were 4.5–5.5 and 55°C, respectively. The enzyme was inhibited strongly by Ag2+, Hg2+ and Cu2+ each at 1 mmol 1-1. The K m (μmol 1-1) for p -, o -, m -nitrophenyl α-D-galactopyranoside, melibiose, raffinose and stachyose were 2.8, 1.3, 2.8, 4.2, 170 and 230, respectively, and V max (μmol min-1 mg protein-1) for those substrates were 310, 140, 21, 22, 30 and 44, respectively. The properties of α-galactosidase from T. delbrueckii IFO 1255 were similar to those from the related species, Saccharomyces cerevisiae.  相似文献   

7.
A chitinase (EC. 3.2.1.14) from autolysed culture filtrate of Penicillium oxalicum was purified by precipitation with ammonium sulphate, gel filtration and ion exchange chromatographies. The purified enzyme showed a single protein band in SDS gel electrophoresis. The enzyme is an acidic protein with a pI of 4.5 and has a molecular weight of 54 900 as estimated from SDS gel electrophoresis and 21 500 from gel filtration. The optimum pH and temperature were 5.0 and 35°C, respectively. The enzyme was stable at temperatures up to 45°C and in a pH range between 4.0 and 6.0. The Km was 2.5 mg ml-1 for colloidal chitin, Hg2+ and Ag+ were effective inhibitors. The viscosimetric study carried out using carboxymethyl chitin as substrate revealed the endotype action of this enzyme.  相似文献   

8.
Five nitrogen-fixing Azotobacter strains isolated from agricultural farms in West Bengal, India, were resistant to mercuric ion and organomercurials. Resistance of Hg-resistant bacteria to mercury compounds is mediated by the activities of mercuric reductase and organomercurial lyase in the presence of NADPH and GSH as cofactors. These bacteria showed an extended lag phase in the presence of 10–50 μmol 1-1 HgCl2. Nitrogen-fixing ability of these isolates was slightly inhibited when the mercuryresistant bacterial cells were preincubated with 10 μmol 1-1 HgCl2. Acetylene reduction by these bacteria was significantly inhibited (91-97%) by 50 μmol 1-1 HgCl2. However, when GSH and NADPH were added to the acetylene reduction assay mixture containing 50 μmol 1-1 HgCl2, only 42–50% inhibition of nitrogenase activity was observed. NADPH and GSH might have a role in suppressing the inhibition of N2-fixation in the presence of Hg compounds either by assisting Hg-detoxifying enzymes to lower Hg concentration in the assay mixture or by formation of adduct comprising Hg and GSH which is unable to inhibit nitrogen fixation.  相似文献   

9.
NADH-nitrate reductase (EC 1.6.6.1) was purified 800-fold from roots of two-row barley ( Hordeum vulgare L. cv. Daisen-gold) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on TSK-gel (G3000SW). The specific activity of the purified enzyme was 6.2 μmol nitrite produced (mg protein)−1 min−1 at 30°C.
Besides the reduction of nitrate by NADH, the root enzyme, like leaf nitrate reductase, also catalyzed the partial activities NADH-cytochrome c reductase, NADH-ferricyanide reductase, reduced methyl viologen nitrate reductase and FMNH2-nitrate reductase. Its molecular weight was estimated to be about 200 kDa, which is somewhat smaller than that for the leaf enzyme. A comparison of root and leaf nitrate reductases shows physiologically similar or identical properties with respect to pH optimum, requirements of electron donor, acceptor, and FAD, apparent Km for nitrate, NADH and FAD, pH tolerance, thermal stability and response to inorganic orthophosphate. Phosphate activated root nitrate reductase at high concentration of nitrate, but was inhibitory at low concentrations, resulting in increases in apparent Km for nitrate as well as Vmax whereas it did not alter the Km for NADH.  相似文献   

10.
High β- N -acetylhexosaminidase (EC.3.2.1.52) activity was detected during autolysis of Penicillium oxalicum . Purification of the enzyme to homogeneity yielded an enzyme with a molecular weight of 132 000 Da by gel filtration and 71 900 Da by SDS polyacrylamide gel electrophoresis, suggesting a dimeric structure. The enzyme is an acidic protein with a pl of 5.0. Optimal activity was at pH 4.0 and 40°C, with a K m of 0.80 mmol 1-1 for p -nitrophenyl-β- N -acetylglucosaminide and 1.03 mmol 1-1 for p -nitrophenyl-β- N -acetylgalactosaminide. The K i with the competitive inhibitor O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino- N -phenylcarbamate was 1 μmol 1-1. Hg2+, Ag+ and Fe3+ were effective inhibitors. β- N -acetylhexosaminidase hydrolysed chitobiose, chitotriose, chitotetrose and chitopentose to monomer to an extent of 92, 74, 44 and 17% respectively in 40 min. This enzyme, in conjunction with a purified endochitinase from P. oxalicum , hydrolysed a cell-wall chitin fraction isolated from this fungus, with the production of N -acetylglucosamine.  相似文献   

11.
Two separate enzymes, which determine resistance to inorganic mercury and organomercurials, have been purified from the plasmid-bearing Escherichia coli strain J53-1(R831). The mercuric reductase that reduces Hg2+ to volatile Hg0 was purified about 240-fold from the 160,000 X g supernatant of French press disrupted cells. This enzyme contains bound FAD, requires NADPH as an electron donor, and requires the presence of a sulfhydryl compound for activity. The reductase has a Km of 13 micron HgCl2, a pH optimum of 7.5 in 50 mM sodium phosphate buffer, an isoelectric point of 5.3, a Stokes radius of 50 A, and a molecular weight of about 180,000. The subunit molecular weight, determined by gel electrophoresis in the presence of sodium dodecyl sulfate, is about 63,000 +/- 2,000. These results suggest that the native enzyme is composed of three identical subunits. The organomercurial hydrolase, which breaks the mercury-carbon bond in compounds such as methylmercuric chloride, phenylmercuric acetate, and ethylmercuric chloride, was purified about 38-fold over the starting material. This enzyme has a Km of 0.56 micron for ethylmercuric chloride, a Km of 7.7 micron for methylmercuric chloride, and two Km values of 0.24 micron and over 200 micron for phenylmercuric acetate. The hydrolase has an isoelectric point of 5.5, requires the presence of EDTA and a sulfhydryl compound for activity, has a Stokes radius of 24 A, and has a molecular weight of about 43,000 +/- 4,000.  相似文献   

12.
An extracellular β-glucosidase enzyme was purified from the fungus Aspergillus niger strain 322 . The molecular mass of the enzyme was estimated to be 64 kDa by SDS gel electrophoresis. Optimal pH and temperature for β-glucosidase were 5·5 and 50 °C, respectively. Purified enzyme was stable up to 50 °C and pH between 2·0 and 5·5. The Km was 0·1 mmol l−1 for cellobiose. Enzyme activity was inhibited by several divalent metal ions.  相似文献   

13.
Differences in the apparent molecular weights of the subunits of glutathione reductase (EC 1.6.4.2) from pea chloroplasts and corn mesophyll chloroplasts have been recently reported. In order to more fully describe the differences between the enzymes from these two sources, glutathione reductase from the mesophyll chloroplasts of corn seedlings ( Zea mays L. cv. G-4507) has been purified 200-fold by affinity chromatography using adenosine 2',5'-disphosphate agarose. The purified enzyme had a specific activity of 26 μmol NADPH oxidized (mg protein)-1 min-1. The native enzyme had a relative molecular weight of 190 ± 30 kDa and exhibited polypeptides of 65, 63, 34, and 32 kDa when separated on sodium dodecylsulfate-polyacrylamide gels. Comparisons of the results from electroblotting, native molecular weight and subunit molecular weight analyses suggest that the enzyme exists as a heterotetramer. Optimal enzyme activity was obtained at pH 8 in N-2-hydroxyethyl-piperazine-N'-2-ethanesulfonic acid (HEPES-NaOH) buffer. The sulfhydryl reagent, n -ethylmaleimide, inhibited enzymatic activity when incubated in the presence of NADPH while no inhibition was detected with oxidized glutathione in the incubation mixture. Reduced glutathione (5 m M ) inactivated the enzyme by 50%. This inactivation followed first order kinetics with a rate constant of 0.0028 s-1. The enzyme was also inactivated by NADPH. The inactivation reached ca 90% within 30 min and followed first order kinetics with a rate constant of 0.0015 s-1.  相似文献   

14.
Abstract The methyl-CoM reductase from Methanothrix soehngenii was purified 18-fold to apparent homogeneity with 50% recovery in three steps. The native molecular mass of the enzyme estimated by gel-fitration was 280 kDa. SDS-polyacrylamide gel electrophoresis revealed three protein bands corresponding to M r 63 900, 41 700 and 30 400 Da. The methyl-coenzyme M reductase constitutes up to 10% of the soluble cell protein. The enzyme has K m apparent values of 23 μM and 2 mM for N -7-mercaptoheptanoylthreonine phosphate (HS- HTP = component B ) and methyl-coenzyme M (CH3CoM) respectively. At the optimum pH of 7.0 60 nmol of methane were formed per min per mg protein.  相似文献   

15.
A mitochondrial serine hydroxymethyltransferase (EC 2.1.2.1) has for the first time been purified close to homogeneity from a photosynthetically active tissue, spinach ( Spinacea oleracea L. cv Viking II) leaves. The specific activity of the enzyme was 7.8 μmol (mg protein)−1 min−1 using L-serine as substrate. The enzyme was stable for at least 8 weeks at 4°C in the presence of folate. The pH optimum was at pH 8.5 where the enzyme had a Km for L-serine of 0.9 m M . Carboxymethoxylamine was a strong competitive inhibitor with a K1 of 1.4 μM. An absorption spectrum taken of the enzyme in the presence of glycine and tetrahydrofolate showed a peak at 492 nm, probably originating from a substrate-enzyme complex. The molecular weight obtained by gel filtration was 209 kDa. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the purified enzyme showed that the apparent molecular weight of the subunit was 53 kDa, indicating four subunits.  相似文献   

16.
Sucrose synthase (UDP glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13) was partially purified from wheat ( Triticum aestivum L. cv. San Agustin INTA) leaves and its properties compared with the wheat germ enzyme. The leaf enzyme moved faster in polyacrylamide gel electrophoresis, was more sensitive to SH reagents and crossreacted more slowly with antibody prepared towards the germ enzyme. Kinetic constants were of the same order for all substrates. UDP was a strong inhibitor of the synthesis reaction. MgCl2 stimulated this reaction and partially reversed UDP inhibition. Molecular weight determined by gel filtration was 380 and 370 kdalton for the leaf and germ enzymes respectively. Both enzymes presented forms of higher molecular weight estimated to around 800 and 1000 kdalton. Neither sucrose synthase from leaves nor from germ were affected by fructose 6-P, fructose 1,6—P2, glucose 1—P, glucose 6—P, fructose 2,6—P2 and cAMP.  相似文献   

17.
Abstract Two constitutive acetoacetyl-CoA (AcAc-CoA) reductases were purified from Alcaligenes eutrophus . Incorporation of [1-14C]-acetyl-CoA into poly-3-hydroxybutyrate (PHB) by systems reconstituted from purified preparations of either 3-ketothiolase, AcAc-CoA reductase and PHB synthase, occurred only when NADPH-AcAc-CoA reductase was present. The NADH reductase was active with all of the d (−)- and l (+)-3-hydroxyacyl-CoA substrates tested (C4-C10), whereas the NADPH reductase was only active with d (−)-3-hydroxyacyl-CoAs (C4-C6). The products of AcAc-CoA reduction by the NADH- and NADPH-linked enzymes were l (+)-3-hydroxybutyryl-CoA and d (−)-3-hydroxybutyryl-CoA, respectively. The NADH-linked enzyme had an M r of 150,000 (containing identical M r 30,000 sub-units) and the NADPH-linked enzyme appeared to be a tetramer ( M r 84,000) with identical sub-units ( M r 23,000). K mapp values of 22 μM and 5 μM for AcAc-CoA and 13 μM (NADH) and 19 μM (NADPH) for the coenzymes were determined for the NADH- and NADPH-linked enzymes, respectively.  相似文献   

18.
Amylase activity extracted from tulip ( Tulipa gesneriana L. cv. Apeldoorn) bulbs that had been stored for 6 weeks at 4°C was resolved to 3 peaks by anion-exchange chromatography on diethylaminoethyl-Sephacel. These 3 amylases exhibited different relative mobilities during non-denaturing polyacrylamide gel electrophoresis (PAGE). The most abundant amylase form (amylase I) was purified to apparent homogeneity using hydrophobic interaction chromatography, gel filtration and chromatofocusing. The apparent molecular mass of the purified amylase was estimated to be 51 kDa by sodium dodecyl sulfate-PAGE and 45 kDa by gel filtration chromatography. The purified amylase was determined to be an endoamylase (EC 3.2.1.1) based on substrate specificity and end-product analysis. The enzyme had a pH optimum of 6.0 and a temperature optimum of 55°C. The apparent Km value with soluble starch (potato) was 1.28 mg ml−1. The presence of Ca2+ increased the activity and thermal stability of the enzyme. The presence of dithiothreitol enhanced the activity, while β -mercaptoethanol and reduced glutathione had no significant effect. When pre-incubated in the absence of the substrate, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid) partially inhibited the enzyme. α -cyclodextrins or β -cyclodextrins had no effect on enzyme activity up to 10 m M . In addition to CaCl2, CoCl2 slightly enhanced activity, while MgCl2 and MnCl2 had no significant effect at a concentration of 2 m M . ZnCl2, CuSO4, AgNO3 and EDTA partially inhibited enzyme activity, while AgNO3 and HgCl2 completely inhibited it at 2.0 m M .  相似文献   

19.
NADP-dependent glutamate dehydrogenase (EC 1.4.1.4) extracted from Sphaerostilbe repens was purified to homogeneity by using ammonium sullate fractionation hydroxyapatite and DEAE-cellulose column chromatography and, finally, preparative polyacrylamide gel electrophoresis. The turnover number of the enzyme for the amination reaction was about 66000 mol substrate transformed min-1 (molecule of GDH)-1. Molecular weight of the native enzyme was estimated to be 280000 dalton by polyacrylamide gradient gel electrophoresis. The same technique in the presence of sodium dodecyl sulfatc gave a single protein band that corresponded to the subunit molecular weight of 48000 dalton. Thus, it is concluded that NADP-GDH is composed of six identical polypeptidic chains.
The pH optimums were 6.9 and 8.4 for the forward and reverse reactions respectively. The NADP-GDH lost practically none of its activity for ten days at 4°C and for 15 h at room temperature, but was inactivated by higher temperatures. Thiol compounds such as 2-mercaptoethanol and dithiolhrcitol protected the enzyme from rapid inactivation. The Michaelis constants for GDH were 0.64, 0.049. 0.043 and 5.5 m M for α-ketoglutaratc. NADPH, NADP and glutamate, respectively. The enzyme had a negative cooperativity for ammonium (Hill number of 0.66), and its Km value increased from 2.6 to 21.2 m M when the ammonium concentration exceeded 16 m M . The deamination reaction was highly sensitive to inhibition by ammonium, while the amination reaction was only slightly inhibited by glutamate. These results, considered together with the Km values, indicate that the NADP-GDH in Sphaerostilbe repens is primarily concerned with glutamate biosynthesis.  相似文献   

20.
An organism producing α-amylase and identified as Lactobacillus cellobiosus D-39 was recently isolated from vegetable wastes. Its amylase was purified by (NH4)2SO4 precipitation and DEAE cellulose column chromatography and was obtained in crystalline form. It was fairly stable at a broadly neutral pH range and maximally active at 50°C. The molecular weight was 22 500 daltons as determined by SDS gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号