首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
This study investigated whether pain-induced changes in cervical muscle activation affect myoelectric manifestations of cervical muscle fatigue. Surface EMG signals were detected from the sternocleidomastoid and splenius capitis muscles bilaterally from 14 healthy subjects during 20-s cervical flexion contractions at 25% of the maximal force. Measurements were performed before and after the injection of 0.5 ml of hypertonic (painful) or isotonic (control) saline into either the sternocleidomastoid or splenius capitis in two experimental sessions. EMG average rectified value and mean power spectral frequency were estimated throughout the sustained contraction. Sternocleidomastoid or splenius capitis muscle pain resulted in lower sternocleidomastoid EMG average rectified value on the side of pain (P < 0.01). However, changes over time of sternocleidomastoid EMG average rectified value and mean frequency (myoelectric manifestations of fatigue) during sustained flexion were not changed during muscle pain. These results demonstrate that pain-induced modifications of cervical muscle activity do not change myoelectric manifestations of fatigue. This finding has implications for interpreting the mechanisms underlying greater cervical muscle fatigue in people with neck pain disorders.  相似文献   

2.
The objective of the study was to determine the median frequency (MF) and mean power frequency (MPF) of the stermodeidomastorial, splenius capitis and trapezius in progressively and linearly increasing isometric cervical flexion and extension. There is a dearth of data on spectral parameters of cervical muscles. Such data have been generated from 40 young adult subjects (21 male and 19 female). The subjects were seated upright in an individually adjusted chair and stabilized with a 4-point Velcro restraint system to stabilize the torso. These subjects exerted isometric flexor and extensor forces in a random sequence on an instrumented resistance device (specifically designed for the study) in a gradual and linearly increasing manner with a visual feedback to their maximal voluntary contraction (MVC) within a 5 s period. Surface EMG was sampled from the sternocleidomastoid, the splenius capitis and the trapezius muscles bilaterally at 1 kHz. The EMG signals were subjected to Fast Fourier Transform (FFT) analysis. Spectral profiles of all muscles in the dimensions of frequency, power, and grade of contraction were plotted. The mean median frequency (MF), mean power frequency (MPF), peak power and total power were analyzed. In the sternocleidomastoid, and the splenius the MF increased with the grade of contraction, widening its bandwidth at higher grades. The trapezius maintained a narrow bandwidth and its MF declined with the grade of contraction.  相似文献   

3.
Surface electromyographic (EMG) amplitude and mean power frequency (MPF) were used to study the isometric muscular activity of the right versus the left upper trapezius muscles in 14 healthy right-handed women. The EMG activity was recorded simultaneously with force signals during a 10-15 s gradually increasing exertion of force, up to maximal force. Only one side at a time was tested. On both sides there was a significant increase in EMG amplitude (microV) during the gradually increasing force from 0% to 100% maximal voluntary contraction (MVC). The right trapezius muscle showed significantly less steep slopes for regression of EMG amplitude versus force at low force levels (0%-40% MVC) compared intra-individually with high force levels (60%-100% MVC). This was not found for the left trapezius muscle. At 40% MVC a significantly lower MPF value was found for the right trapezius muscle intra-individually compared with the left. An increase in MPF between 5% and 40% MVC was statistically significant when both sides were included in the test. The differences in EMG activity between the two sides at low force levels could be due to more slow-twitch (type I fibres) motor unit activity in the right trapezius muscles. It is suggested that this is related to right-handed activity.  相似文献   

4.
The study compared the distribution of electromyographic (EMG) signal amplitude in the upper trapezius muscle in 10 women with fibromyalgia and in 10 healthy women before and after experimentally-induced muscle pain. Surface EMG signals were recorded over the right upper trapezius muscle with a 10 × 5 grid of electrodes during 90° shoulder abduction sustained for 60 s. The control subjects repeated the abduction task following injections of isotonic and hypertonic (painful) saline into the upper trapezius muscle. The EMG amplitude was computed for each electrode pair and provided a topographical map of the distribution of muscle activity. The pain level rated by the patients at the beginning of the sustained contraction was 5.9 ± 1.5. The peak pain intensity for the control group following the injection of hypertonic saline was 6.0 ± 1.6. During the sustained contractions, the EMG amplitude increased relatively more in the cranial than caudal region of the upper trapezius muscle for the control subjects (shift in the distribution of EMG amplitude: 2.3 ± 1.3 mm; P < 0.01). The patient group showed lower average EMG amplitude than the controls during the contraction (P < 0.05) and did not show different changes in EMG amplitude between different regions of the upper trapezius. A similar behavior was observed for the control group following injection of hypertonic saline. The results indicate that muscle pain prevents the adaptation of upper trapezius activity during sustained contractions as observed in non-painful conditions, which may induce overuse of similar muscle compartments with fatigue.  相似文献   

5.
BackgroundIt has been suggested that increased fatigue of neck muscles could be related to neck pain. However, studies on the matter present contradicting results which could be explained by the different test positions used.PurposeThe purpose of this study was to investigate the influence of test position on muscle fatigue of neck flexor and extensor muscles in healthy controls.MethodsTwenty-five women without neck pain sustained neck flexion and neck extension isometric contractions at 25% and 75% of their maximal voluntary contraction (MVC) in two test positions: sitting and supine lying. Using surface electromyography, the change over time of the median frequency of the power spectrum (MDF slope) of the myoelectric signal of the sternocleidomastoid and splenius capitis muscles was measured and compared between both positions.ResultsAt 75% MVC, splenius capitis muscles presented higher fatigue in lying compared to sitting, while sternocleidomastoid demonstrated no difference between positions. No statistically significant effect of test position was found at 25% MVC for both sternocleidomastoid and splenius capitis muscles as they generally did not present myoelectric manifestations of fatigue.ConclusionThese results underline the need to standardise the test position when investigating neck muscle fatigue, especially for neck extensors at high loads.  相似文献   

6.
This study determines whether changes in the EMG values of two important muscles of the shoulder and neck region, the anterior deltoid and the upper trapezius, are due to changes in torque production or due to fatigue processes during sustained activity. Contractions at 20, 40, 60, 80 and 100% MVC were performed during a flexion of the arm in the sagittal plane at 90 degrees, to examine the relation between torque and EMG. A sustained contraction at 20% MVC was performed to endurance point in the same position. RMS, a new parameter called activity, (ACT), and MPF of the deltoid anterior and the upper trapezius were analysed. The amplitude values correlated highly with increasing torque production, both for the deltoid muscle (range r = 0.95-0.96), and the trapezius muscle (range r = 0.83-0.87), whereas no significant difference was found for MPF. For the endurance task, the decrease in MPF was far more pronounced for the deltoid than for the trapezius, whereas the opposite occurred with RMS (P < or = 0.01). Furthermore, there was no significant difference over time for the ACT values of the deltoid, whereas there were significant increases in ACT for the trapezius (P < or = 0.01). The RMS/ACT ratio correlated highly (r = 0.81) with the MPF. Regression coefficients of these parameters differed significantly for the trapezius muscle but not for the deltoid muscle. Therefore, the RMS/ACT ratio may be extremely important in analysing the fatigue effects during sustained efforts, independent of torque variations, which can influence indicators of fatigue.  相似文献   

7.
Increasingly complex models of the neck neuromusculature need detailed muscle and kinematic data for proper validation. The goal of this study was to measure the electromyographic activity of superficial and deep neck muscles during tasks involving isometric, voluntary, and reflexively evoked contractions of the neck muscles. Three male subjects (28-41 years) had electromyographic (EMG) fine wires inserted into the left sternocleidomastoid, levator scapulae, trapezius, splenius capitis, semispinalis capitis, semispinalis cervicis, and multifidus muscles. Surface electrodes were placed over the left sternohyoid muscle. Subjects then performed: (i) maximal voluntary contractions (MVCs) in the eight directions (45 deg intervals) from the neutral posture; (ii) 50 N isometric contractions with a slow sweep of the force direction through 720 deg; (iii) voluntary oscillatory head movements in flexion and extension; and (iv) initially relaxed reflex muscle activations to a forward acceleration while seated on a sled. Isometric contractions were performed against an overhead load cell and movement dynamics were measured using six-axis accelerometry on the head and torso. In all three subjects, the two anterior neck muscles had similar preferred activation directions and acted synergistically in both dynamic tasks. With the exception of splenius capitis, the posterior and posterolateral neck muscles also showed consistent activation directions and acted synergistically during the voluntary motions, but not during the sled perturbations. These findings suggest that the common numerical-modeling assumption that all anterior muscles act synergistically as flexors is reasonable, but that the related assumption that all posterior muscles act synergistically as extensors is not. Despite the small number of subjects, the data presented here can be used to inform and validate a neck model at three levels of increasing neuromuscular-kinematic complexity: muscles generating forces with no movement, muscles generating forces and causing movement, and muscles generating forces in response to induced movement. These increasingly complex data sets will allow researchers to incrementally tune their neck models' muscle geometry, physiology, and feedforward/feedback neuromechanics.  相似文献   

8.
The deep cervical flexor (DCF) muscles are considered to be of substantial clinical importance in the management of neck pain. While conventional cervical flexion (CF) dynamometry methods have been used frequently to assess the capacity of the cervical flexor muscles, it has been suggested that cranio-cervical flexion (CCF) methods may provide a more specific test of DCF muscle performance. This study compared the activation of the deep and superficial cervical flexor muscles between tests of isometric cranio-cervical flexion (CCF) and conventional cervical flexion (CF) dynamometry. Normalised root-mean-square values were recorded for the deep cervical flexor (DCF), sternocleidomastoid (SCM), anterior scalene (AS), and sternohyoid (SH) muscles during isometric CCF and CF tests at maximal voluntary contraction (MVC), 50% MVC, and 20% MVC in ten healthy volunteers. The results demonstrated significantly greater electromyography (EMG) amplitude for the SCM (P<.001-.002) and AS (P<.001-.001) muscles in the CF test conditions (MVC, 20%MVC, and 50%MVC) compared to CCF test conditions. Moreover, the SH muscle demonstrated significantly greater EMG amplitude during CF compared to CCF but only in the 50% MVC and 20% MVC conditions (P=.007 and .02 respectively). These results demonstrate that dynamometry tests of CF result in greater activity of the superficial cervical flexor muscles compared to tests of CCF. As a result, CCF dynamometry may provide a more specific method to assess and retrain DCF muscle performance, compared to conventional CF in which superficial muscle activity may mask impaired performance of the DCF muscles.  相似文献   

9.
The purpose of this study was to determine whether surface electromyography (EMG) assessment of myoelectric manifestations of muscle fatigue is capable of detecting differences between the vastus lateralis and medialis muscles which are consistent with the results of previous biopsy studies. Surface EMG signals were recorded from the vastus medialis longus (VML), vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles during isometric knee extension contractions at 60% and 80% of the maximum voluntary contraction (MVC) for 10 s and 60 s, respectively. Initial values and rate of change of mean frequency (MNF), average rectified value (ARV) and conduction velocity (CV) of the EMG signal were calculated. Comparisons between the two force levels revealed that the initial values of MNF for the VL muscle were greater at 80% MVC compared to 60% MVC (P < 0.01). Comparisons between the vasti muscles demonstrated lower initial values of CV for VMO compared to VL at 60% MVC (P < 0.01) and lower than VML and VL at 80% MVC (P < 0.01). In addition, initial values of MNF were higher for VL with respect to both VML and VMO at 80% MVC (P < 0.01) and initial estimates of ARV were higher for VMO compared to VML at both force levels (P < 0.01 at 60% MVC and P < 0.05 at 80% MVC). For the sustained contraction at 80% MVC, VL demonstrated a greater decrease in CV over time compared to VMO (P < 0.05).These findings suggest that surface EMG signals and their time course during sustained isometric contractions may be useful to non-invasively describe functional differences between the vasti muscles.  相似文献   

10.
Studies have shown an increased muscle activation at the opposite passive side during unilateral contractions. The purpose of the present study was to examine the influence of pain on muscle activation in the passive shoulder during unilateral shoulder abduction. Ten patients with unilateral rotator tendinosis of the shoulder and nine healthy controls performed unilateral maximal voluntary contractions (MVC) and sustained submaximal contractions with and without subacromial injections of local anaesthetics of the afflicted shoulder. Muscle activation was recorded by electromyography (EMG) from the trapezius, deltoid, infraspinatus and supraspinatus muscles in both shoulders. During MVCs, the EMG amplitude from muscles of the passive afflicted side was not different in patients and controls, and was not influenced by pain alterations. In contrast, the EMG amplitude from the muscles of the passive unafflicted side was lower in the patients and increased after pain reduction. During the sustained submaximal contraction the EMG amplitude increased gradually in the passive shoulder to 15-30% of the EMG amplitude observed during MVC. This response was not influenced by differences in pain. We conclude that muscle activation of the passive shoulder was closely related to the activation of the contracting muscles and thus related to central motor drive, and not directly influenced by changes in pain.  相似文献   

11.
The present study compared three procedures for normalization of upper trapezius surface electromyographic (EMG) amplitudes: (a) a ramp procedure (providing data in per cent of maximal voluntary contraction, MVC); (b) a constant force procedure based on two reference contractions (two-force procedure) (%MVC) and (c) a procedure expressing muscle activation in per cent of a reference voluntary electrical activity (%RVE). The study also evaluated the repeatability of the ramp and the RVE procedures and estimated the force exertion (%MVC) corresponding to the RVE. To illustrate the ergonomic effect of different normalization procedures, trapezius EMG during two work tasks was compared after normalization by the two-force and the RVE procedures. Fifteen subjects participated in the whole study. We found that force estimates obtained by the ramp procedure equation could be translated to force estimates obtained by the two-force procedure by the equation: %MVC2force = − 0.6 + 0.9*%MVCramp, although with a considerable imprecision due to large inter-individual differences. In the ramp procedure, the intra-individual test-retest coefficient of variation (CV) depended on the force level; it was 45% at 5% MVC and 10% at 30% MVC. The CV of the RVE was 15%. The reference contraction used in the RVE procedure corresponded from 13–79% MVC (median 33%MVC). The load reducing effect of an ergonomic intervention was less obvious with the RVE procedure than with the two-force procedure due to a larger inter-individual variation. The advantages and disadvantages of the different procedures are discussed.  相似文献   

12.
The purpose of this study was to evaluate the neuromuscular adaptation that occurred with aging, by comparing young and aged subjects with respect to changes in surface EMG from the tibialis anterior muscle during fatiguing contractions. EMG variables such as the averaged rectified value (ARV), median frequency (MDF), and muscle fiber conduction velocity (MFCV) were calculated during maximal (MVC, 3 sec) and submaximal (60% MVC, 60 sec) isometric contractions. Muscular force, ARV, MDF, and MFCV during MVC were significantly greater in the young than in the elderly (p < 0.05). EMG amplitude increased and the waveform slowed in all subjects during submaximal contractions, indicating the development of local muscle fatigue. As fatigue progressed, the ARV increased and the MDF and MFCV decreased significantly (p < 0.01). The fatigue-induced changes in the MDF and MFCV were significantly smaller in aged than in young subjects (p < 0.05), a trend also seen in the ARV change, which means that the elderly cannot be fatigued as much as the young with contractions of the same relative intensity. These results as a whole suggest that the aged subjects hold an adaptive motor strategy to cope with age-related neuromuscular deteriorations, due to the decline of motor unit activation and selective atrophy of fast twitch muscle fibers.  相似文献   

13.
To investigate the behavior of mechanomyogram (MMG) and electromyogram (EMG) signals in the time and frequency domains during sustained isometric contraction, MMG and surface EMG were obtained simultaneously from four muscles: upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR) of 10 healthy male subjects. Experimental conditions consisted of 27 combinations of 9 postures [3 shoulder angles (SA): 0 degree, 30 degrees, 60 degrees and 3 elbow angles (EA): 120 degrees, 90 degrees, 60 degrees] and 3 contraction levels: 20%, 40%, and 60% of maximum voluntary contraction (MVC). Subjective evaluations of fatigue were also assessed using the Borg scale at intervals of 60, 30, and 10 sec at 20%, 40%, and 60% MVC tests, respectively. The mean power frequency (MPF) and root mean square (RMS) of both signals were calculated. The current study found clear and significant relationships among physiological and psychological parameters on the one hand and SA and EA on the other. EA's effect on MVC was found to be significant. SA had a highly significant effect on both endurance time and Borg scale. In all experimental conditions, significant correlations were found between the changes in MPF and RMS of EMG in BB with SA and EA (or muscle length). In all four muscles, MMG frequency content was two or three times lower than EMG frequency content. During sustained isometric contraction, the EMG signal showed the well-known shift to lower frequencies (a continuous decrease from onset to completion of the contraction). In contrast, the MMG spectra did not show any shift, although its form changed (generally remaining about constant). Throughout the contraction, increased RMS of EMG was found for all tests, whereas in the MMG signal, a significant progressive increase in RMS was observed only at 20% MVC in all four muscles. This supports the hypothesis that the RMS amplitude of the MMG signal produced during contraction is highly correlated with force production. Possible explanations for this behavioral difference between the MMG and EMG signals are discussed.  相似文献   

14.
The purpose of this study was to explore changes in spatial muscle activation within the three divisions of the trapezius muscle during a dynamic, cyclic task of the upper limb. Surface EMG signals were detected from thirteen healthy subjects from the upper, middle and lower divisions of the trapezius muscle at multiple electrode sites in the cephalad-caudal direction during a repetitive shoulder flexion task. Initial values and rate of change of average rectified value (ARV) and of instantaneous mean power spectral frequency (iMNF) were estimated at 45 degrees , 90 degrees and 120 degrees of shoulder flexion throughout the 5-min task. The location of the electrodes had a significant effect on initial EMG ARV for both the upper and middle division of the trapezius muscle (P<0.05). Both the rate of change and normalized rate of change of ARV were greatest for the most cranial muscle fibers of the upper division (P<0.05). Initial values and rates of change of iMNF were also affected by electrode location for the upper and lower divisions of the trapezius muscle (P<0.05). These results demonstrate that muscle activity and its changes over time depend on position within the three divisions of the trapezius muscle during a dynamic, cyclic task of the upper limb. This suggests non-uniform muscle fiber distribution and/or recruitment. The results also highlight the importance of multiple recording sites when investigating trapezius muscle function in dynamic tasks.  相似文献   

15.
A motor task can be performed via different patterns of muscle activation that show regularities that can be factorized in combinations of a reduced number of muscle groupings (also referred to as motor modules, or muscle synergies). In this study we evaluate whether an acute noxious stimulus induces a change in the way motor modules are combined to generate movement by neck muscles. The neck region was selected as it is a region with potentially high muscular redundancy. We used the motor modules framework to assess the redistribution of muscular activity of 12 muscles (6 per side) in the neck region of 8 healthy individuals engaged in a head and neck aiming task, in non-painful conditions (baseline, isotonic saline injection, post pain) and after the injection of hypertonic saline into the right splenius capitis muscle. The kinematics of the task was similar in the painful and control conditions. A general decrease of activity was noted for the injected muscle during the painful condition together with an increase or decrease of the activity of the other muscles. Subjects did not adopt shared control strategies (motor modules inter subject similarity at baseline 0.73±0.14); the motor modules recorded during the painful condition could not be used to reconstruct the activation patterns of the control conditions, and the painful stimulus triggered a subject-specific redistribution of muscular activation (i.e., in some subjects the activity of a given muscle increased, whereas in other subjects it decreased with pain). Alterations of afferent input (i.e., painful stimulus) influenced motor control at a multi muscular level, but not kinematic output. These findings provide new insights into the motor adaptation to pain.  相似文献   

16.
A group of 12 healthy men volunteered for the experiment. Electromyograms (EMG) were obtained from semispinalis capitis, splenius capitis, levator scapulae, and trapezius muscles. The flexion angle of the cervical spine was precisely adjusted to 0°, 10°, 20°, and 30° relative to the horizontal, with a constant angle of the atlanto-occipital joint. The subjects made eight short (about 2 s) vertical extension forces (6%, 12%,18%, 24%, 30%, 36%, 42%, and 48% of maximal voluntary peak contraction force). For each position, the centre of pressure under the head was determine as the basis for the calculation of the external lever arm. The presence of motor endplate regions was ascertained by multiple surface electrodes. The slopes of individual linear regression lines for the root mean square (rms)-values were dependent on the existence of endplates in the area of the electrodes — endplates caused smaller rms values per Newton metres of external torque. Significant intersubject differences between regression equations could not be eliminated by the normalization of EMG-parameters and/or torques. The elimination of gravity, the continuous monitoring of positions, and the consideration of localization of motor endplate regions were essential prerequisites for the acquisition of reliable relationships between EMG of different neck muscles and external torques. Two important conclusions were derived for the prediction of torques from EMG measurements: firstly, individual regression equations which take into account the position of the head and neck should be used; secondly, normalization procedures do not justify the application of average regressions to a group of subjects.  相似文献   

17.
The present study investigated the effect of chronic neck muscle pain (defined as trapezius myalgia) on neck/shoulder muscle function during concentric, eccentric and static contraction. Forty-two female office workers with trapezius myalgia (MYA) and 20 healthy matched controls (CON) participated. Isokinetic (-60, 60 and 180 degrees s(-1)) and static maximal voluntary shoulder abductions were performed in a Biodex dynamometer, and electromyography (EMG) obtained in the trapezius and deltoideus muscles. Muscle thickness in the trapezius was measured with ultrasound. Pain and perceived exertion were registered before and after the dynamometer test. The main findings were that shoulder abduction torque (at -60 and 60 degrees s(-1)) and trapezius EMG amplitude (at -60, 0 and 60 degrees s(-1)) were significantly lower in MYA compared with CON (p<0.001-0.05). Deltoideus EMG and trapezius muscle thickness were not significantly different between the groups. While perceived exertion increased in both groups in response to the test (p<0.0001), pain increased in MYA only (p<0.0001). In conclusion, having trapezius myalgia was associated with decreased strength capacity and lowered activity of the painful trapezius muscle. The most consistent differences-in terms of both torque and EMG-were found during slow concentric and eccentric contractions. Activity of the synergistic pain free deltoideus muscle was not significantly lower, indicating specific inhibitory feedback of the painful trapezius muscle only. Parallel increase in pain and perceived exertion among MYA were observed in response to the maximal contractions, emphasizing that heavy physical exertion provokes pain increase only in conditions of myalgia.  相似文献   

18.
The purpose of this study was to evaluate muscle fatigue using electromyogram (EMG) and acoustic myogram (AMG) signals of the shoulder and arm muscles during sustained holding tasks, with the elbow at different angles and at different levels of maximum voluntary contraction (MVC). The EMG and AMG of four muscles, including the upper trapezius (TP), anterior deltoid (DL), biceps brachii (BB), and brachioradialis (BR), were recorded during experiments using 10 healthy young males. The experiments were conducted under 9 pairs of conditions: 3 elbow angles (120 degrees, 90 degrees, and 60 degrees) and *3 levels of %MVC (20%, 40%, and 60%). Subjects were instructed to hold a weight equal to the designated %MVC at designated joint angles and asked to maintain that condition for as long as possible until exhaustion. Joint angles were also recorded by the electrogoniometers. The analysis of variance revealed that there was no significant effect of elbow angle on the mean MVC or on the endurance time. Elbow angle showed a significant effect on mean power frequency (MPF) of EMG in DL, BB, and BR, and a significant effect on root mean square (RMS) of EMG in four muscles. In BB and BR, MPF of EMG at 120 degrees was found to be significantly lower than 90 degrees and 60 degrees, respectively. There was a significant main effect of elbow angle on MPF of AMG for TP at 20% MVC; for DL at 20% and 40% MVC; for BB at 40% and 60% MVC; and for BR at the three levels of %MVC. The results showed that the range MPF of AMG for DL, BB, and BR was between 32 to 46 Hz, whereas that for TP was from 49 to 83 Hz. There was a significant effect of elbow angle on RMS of AMG in all four muscles in all experiments. At 20% MVC, a progressive increase in RMS of AMG was observed with time. In contrast, at 40% and 60% MVC, RMS showed very different behavior; specifically, it was found that RMS of AMG at 20% MVC significantly increased with increase of elbow angle. We conclude that RMS of AMG has a good and clear correlation with elbow angle at a low level of contraction.  相似文献   

19.
This study aimed to clarify the effective stretching positions for neck extensor muscles. Fifteen healthy men were measured shear moduli of the right neck extensor muscles using ultrasound shear wave elastography in following positions: rest (Rest), flexion (Flex), contralateral bending (Bend), flexion + contralateral bending (Flex → Bend), flexion + contralateral bending + contralateral rotation (Flex → Bend → ConRot), and flexion + contralateral bending + ipsilateral rotation (Flex → Bend → IpsRot). The increase in the shear modulus indicated a greater muscle elongation. Regarding the upper trapezius and splenius capitis, the shear moduli at Flex → Bend, Flex → Bend → ConRot, and Flex → Bend → IpsRot were significantly higher than those at Rest. The shear moduli at stretching positions, including contralateral bending, were significantly higher than those at Rest and Flex in the levator scapulae. The results indicated that the stretching position with a combination of flexion and contralateral bending could be effective for elongation of the upper trapezius and splenius capitis. Furthermore, the stretching positions including contralateral bending could be effective for the levator scapulae.  相似文献   

20.
The semispinalis capitis and splenius muscles of the horse were analyzed for gross morphology, microarchitecture, fiber length, and fiber type. Although these two muscles are similar in size and anatomical position, they are very different from one another in structural design and histochemistry, implying diverse functional roles in the animal's behavior. The histochemical staining profile was limited to two fiber types: slow oxidative and fast glycolytic. The splenius muscle has simple architecture, long fibers, and a 60/40 ratio of SO to FG cross-sectional area. The semispinalis capitis has complex architecture with short-fibered, concentric compartments dorsal to its central tendon and longer-fibered compartments ventrally. The entire dorsal region has an increasing gradient of slow oxidative fiber percentage from caudal to cranial (58-71% SO). In contrast, the ventral region has a decreasing gradient of slow oxidative fibers from caudal to cranial (48-67% FG). These patterns can be interpreted within the context of the cervical musculature during locomotion and posture to indicate the functional advantages of this organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号