首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium VirB7, VirB9, and VirB10 form a "core complex" during biogenesis of the VirB/VirD4 type IV secretion system (T4SS). VirB10 spans the cell envelope and, in response to sensing of ATP energy consumption by the VirB/D4 ATPases, undergoes a conformational change required for DNA transfer across the outer membrane (OM). Here, we tested a model in which VirB10 regulates substrate passage by screening for mutations that allow for unregulated release of the VirE2 secretion substrate to the cell surface independently of target cell contact. One mutation, G272R, conferred VirE2 release and also rendered VirB10 conformationally insensitive to cellular ATP depletion. Strikingly, G272R did not affect substrate transfer to target cells (Tra(+)) but did block pilus production (Pil(-)). The G272R mutant strain displayed enhanced sensitivity to vancomycin and SDS but did not nonspecifically release periplasmic proteins or VirE2 truncated of its secretion signal. G272 is highly conserved among VirB10 homologs, including pKM101 TraF, and in the TraF X-ray structure the corresponding Gly residue is positioned near an α-helical domain termed the antenna projection (AP), which is implicated in formation of the OM pore. A partial AP deletion mutation (ΔAP) also confers a Tra(+) Pil(-) phenotype; however, this mutation did not allow VirE2 surface exposure but instead allowed the release of pilin monomers or short oligomers to the milieu. We propose that (i) G272R disrupts a gating mechanism in the core chamber that regulates substrate passage across the OM and (ii) the G272R and ΔAP mutations block pilus production at distinct steps of the pilus biogenesis pathway.  相似文献   

2.
Type IV secretion systems mediate the translocation of virulence factors (proteins and/or DNA) from Gram-negative bacteria into eukaryotic cells. A complex of 11 conserved proteins (VirB1-VirB11) spans the inner and the outer membrane and assembles extracellular T-pili in Agrobacterium tumefaciens. Here we report a sequence of protein interactions required for the formation of complexes between VirB2 and VirB5, which precedes their incorporation into pili. The NTPase Walker A active site of the inner membrane protein VirB4 is required for virulence, but an active site VirB4 variant stabilized VirB3 and VirB8 and enabled T-pilus formation. Analysis of VirB protein complexes extracted from the membranes with mild detergent revealed that VirB2-VirB5 complex formation depended on VirB4, which identified a novel T-pilus assembly step. Bicistron expression demonstrated direct interaction of VirB4 with VirB8, and analyses with purified proteins showed that VirB5 bound to VirB8 and VirB10. VirB4 therefore localizes at the basis of a trans-envelope interaction sequence, and by stabilization of VirB8 it mediates the incorporation of VirB5 and VirB2 into extracellular pili.  相似文献   

3.
Type IV secretion systems are macromolecular assemblies in the cell envelopes of bacteria that function in macromolecular translocation. Structural biology approaches have provided insights into the interaction of core complex components, but information about proteins that undergo transient interactions with membrane components has not been forthcoming. We have pursued an unbiased approach using peptide arrays and phage display to identify interaction partners and interaction domains of type IV secretion system assembly factor VirB8. These approaches identified the globular domain from the VirB5 protein to interact with VirB8. This interaction was confirmed in cross-linking, pull-down, and fluorescence resonance energy transfer (FRET)-based interaction assays. In addition, using phage display analysis, we identified different regions of VirB6 as potential interaction partners of VirB8. Using a FRET-based interaction assay, we provide the first direct experimental evidence of the interaction of a VirB6 periplasmic domain with VirB8. These results will allow us to conduct directed structural biological work and structure-function analyses aimed at defining the molecular details and biological significance of these interactions with VirB8 in the future.  相似文献   

4.
Gram-negative type IV secretion systems (T4SSs) transfer proteins and DNA to eukaryotic and/or prokaryotic recipients resulting in pathogenesis or conjugative DNA transfer. VirB4, one of the most conserved proteins in these systems, has both energetic and structural roles in substrate translocation. We previously predicted a structural model for the large C-terminal domain (residues 425-789) of VirB4 of Agrobacterium tumefaciens. Here we have defined a homology-based structural model for Agrobacterium VirB11. Both VirB4 and VirB11 models predict hexameric oligomers. Yeast two-hybrid interactions define peptides in the C terminus of VirB4 and the N terminus of VirB11 that interact with each other. These interactions were mapped onto the homology models to predict direct interactions between the hexameric interfaces of VirB4 and VirB11 such that the VirB4 C terminus stacks above VirB11 in the periplasm. In support of this, fractionation and Western blotting show that the VirB4 C terminus is localized to the membrane and periplasm rather than the cytoplasm of cells. Additional high resolution yeast two-hybrid results demonstrate interactions between the C terminus of VirB4 and the periplasmic portions of VirB1, VirB8, and VirB10. Genetic studies reveal dominant negative interactions and thus function of the VirB4 C terminus in vivo. The above data are integrated with the existing body of literature to propose a structural, periplasmic role for the C-terminal half of the Agrobacterium VirB4 protein.  相似文献   

5.
The F sex factor of Escherichia coli is a paradigm for bacterial conjugation and its transfer (tra) region represents a subset of the type IV secretion system (T4SS) family. The F tra region encodes eight of the 10 highly conserved (core) gene products of T4SS including TraAF (pilin), the TraBF, -KF (secretin-like), -VF (lipoprotein) and TraCF (NTPase), -EF, -LF and TraGF (N-terminal region) which correspond to TrbCP, -IP, -GP, -HP, -EP, -JP, DP and TrbLP, respectively, of the P-type T4SS exemplified by the IncP plasmid RP4. F lacks homologs of TrbBP (NTPase) and TrbFP but contains a cluster of genes encoding proteins essential for F conjugation (TraFF, -HF, -UF, -WF, the C-terminal region of TraGF, and TrbCF) that are hallmarks of F-like T4SS. These extra genes have been implicated in phenotypes that are characteristic of F-like systems including pilus retraction and mating pair stabilization. F-like T4SS systems have been found on many conjugative plasmids and in genetic islands on bacterial chromosomes. Although few systems have been studied in detail, F-like T4SS appear to be involved in the transfer of DNA only whereas P- and I-type systems appear to transport protein or nucleoprotein complexes. This review examines the similarities and differences among the T4SS, especially F- and P-like systems, and summarizes the properties of the F transfer region gene products.  相似文献   

6.
This study characterized the contribution of Agrobacterium tumefaciens VirB6, a polytopic inner membrane protein, to the formation of outer membrane VirB7 lipoprotein and VirB9 protein multimers required for type IV secretion. VirB7 assembles as a disulfide cross-linked homodimer that associates with the T pilus and a VirB7-VirB9 heterodimer that stabilizes other VirB proteins during biogenesis of the secretion machine. Two presumptive VirB protein complexes, composed of VirB6, VirB7, and VirB9 and of VirB7, VirB9, and VirB10, were isolated by immunoprecipitation or glutathione S-transferase pulldown assays from detergent-solubilized membrane extracts of wild-type A348 and a strain producing only VirB6 through VirB10 among the VirB proteins. To examine the biological importance of VirB6 complex formation for type IV secretion, we monitored the effects of nonstoichiometric VirB6 production and the synthesis of VirB6 derivatives with 4-residue insertions (VirB6.i4) on VirB7 and VirB9 multimerization, T-pilus assembly, and substrate transfer. A virB6 gene deletion mutant accumulated VirB7 dimers at diminished steady-state levels, whereas complementation with a plasmid bearing wild-type virB6 partially restored accumulation of the dimers. VirB6 overproduction was correlated with formation of higher-order VirB9 complexes or aggregates and also blocked substrate transfer without a detectable disruption of T-pilus production; these phenotypes were displayed by cells grown at 28 degrees C, a temperature that favors VirB protein turnover, but not by cells grown at 20 degrees C. Strains producing several VirB6.i4 mutant proteins assembled novel VirB7 and VirB9 complexes detectable by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two strains producing the D60.i4 and L191.i4 mutant proteins translocated IncQ plasmid and VirE2 effector protein substrates in the absence of a detectable T pilus. Our findings support a model that VirB6 mediates formation of VirB7 and VirB9 complexes required for biogenesis of the T pilus and the secretion channel.  相似文献   

7.
Type IV secretion systems are virulence factors used by many gram-negative bacteria to translocate macromolecules across the cell envelope. VirB8 is an essential inner membrane component of type IV secretion systems, and it is believed to form a homodimer. In the absence of VirB8, the levels of several other VirB proteins were reduced (VirB1, VirB3, VirB4, VirB5, VirB6, VirB7, and VirB11) in Agrobacterium tumefaciens, underlining its importance for complex stability. To assess the importance of dimerization, we changed residues at the predicted dimer interface (V97, A100, Q93, and E94) in order to strengthen or to abolish dimerization. We verified the impact of the changes on dimerization in vitro with purified V97 variants, followed by analysis of the in vivo consequences in a complemented virB8 deletion strain. Dimer formation was observed in vivo after the introduction of a cysteine residue at the predicted interface (V97C), and this variant supported DNA transfer, but the formation of elongated T pili was not detected by the standard pilus isolation technique. Variants with changes at V97 and A100 that weaken dimerization did not support type IV secretion system functions. The T-pilus component VirB2 cofractionated with high-molecular-mass core protein complexes extracted from the membranes, and the presence of VirB8 as well as its dimer interface were important for this association. We conclude that the VirB8 dimer interface is required for T4SS function, for the stabilization of many VirB proteins, and for targeting of VirB2 to the T-pilus assembly site.  相似文献   

8.
9.
Type IV secretion (T4S) systems are versatile bacterial secretion systems mediating transport of protein and/or DNA. T4S systems are generally composed of 11 VirB proteins and 1 VirD protein (VirD4). The VirB1‐11 proteins assemble to form a secretion machinery and a pilus while the VirD4 protein is responsible for substrate recruitment. The structure of VirD4 in isolation is known; however, its structure bound to the VirB1‐11 apparatus has not been determined. Here, we purify a T4S system with VirD4 bound, define the biochemical requirements for complex formation and describe the protein–protein interaction network in which VirD4 is involved. We also solve the structure of this complex by negative stain electron microscopy, demonstrating that two copies of VirD4 dimers locate on both sides of the apparatus, in between the VirB4 ATPases. Given the central role of VirD4 in type IV secretion, our study provides mechanistic insights on a process that mediates the dangerous spread of antibiotic resistance genes among bacterial populations.  相似文献   

10.
Bacterial conjugation is important for the acquisition of virulence and antibiotic resistance genes. We investigated the mechanism of conjugation in Gram‐positive pathogens using a model plasmid pCW3 from Clostridium perfringens. pCW3 encodes tetracycline resistance and contains the tcp locus, which is essential for conjugation. We showed that the unique TcpC protein (359 amino acids, 41 kDa) was required for efficient conjugative transfer, localized to the cell membrane independently of other conjugation proteins, and that membrane localization was important for its function, oligomerization and interaction with the conjugation proteins TcpA, TcpH and TcpG. The crystal structure of the C‐terminal component of TcpC (TcpC99–359) was determined to 1.8‐Å resolution. TcpC99–359 contained two NTF2‐like domains separated by a short linker. Unexpectedly, comparative structural analysis showed that each of these domains was structurally homologous to the periplasmic region of VirB8, a component of the type IV secretion system from Agrobacterium tumefaciens. Bacterial two‐hybrid studies revealed that the C‐terminal domain was critical for interactions with other conjugation proteins. The N‐terminal region of TcpC was required for efficient conjugation, oligomerization and protein–protein interactions. We conclude that by forming oligomeric complexes, TcpC contributes to the stability and integrity of the conjugation apparatus, facilitating efficient pCW3 transfer.  相似文献   

11.
The coupling of ATP binding/hydrolysis to macromolecular secretion systems is crucial to the pathogenicity of Gram-negative bacteria. We reported previously the structure of the ADP-bound form of the hexameric traffic VirB11 ATPase of the Helicobacter pylori type IV secretion system (named HP0525), and proposed that it functions as a gating molecule at the inner membrane, cycling through closed and open forms regulated by ATP binding/hydrolysis. Here, we combine crystal structures with analytical ultracentrifugation experiments to show that VirB11 ATPases indeed function as dynamic hexameric assemblies. In the absence of nucleotide, the N-terminal domains exhibit a collection of rigid-body conformations. Nucleotide binding 'locks' the hexamer into a symmetric and compact structure. We propose that VirB11s use the mechanical leverage generated by such nucleotide-dependent conformational changes to facilitate the export of substrates or the assembly of the type IV secretion apparatus. Biochemical characterization of mutant forms of HP0525 coupled with electron microscopy and in vivo assays support such hypothesis, and establish the relevance of VirB11s ATPases as drug targets against pathogenic bacteria.  相似文献   

12.
Bartonellae are pathogenic bacteria uniquely adapted to cause intraerythrocytic infection in their human or animal reservoir host(s). Experimental infection of rats by Bartonella tribocorum revealed the initial colonization of a yet unidentified niche outside of circulating blood. This primary niche periodically seeds bacteria into the bloodstream, resulting in the invasion and persistent intracellular colonisation of erythrocytes. Here, this animal model was used for a genetic analysis of the virB locus (virB2-11) and the downstream located virD4 gene, which together encode a putative type IV secretion system (T4SS). A generic method for marker-less gene replacement allowed the generation of non-polar in-frame deletions in either virB4 or virD4. Both mutants were unable to cause bacteraemia, whereas complementation with the full-length genes in trans completely restored infectivity. Segregation analysis of the complementation plasmids further denoted that VirB4 and VirD4 are required at an early stage of the infection course before the onset of intraerythrocytic bacteraemia. This analysis of defined mutants in an in vivo model identified components of the VirB/VirD4 T4SS as the first bona fide pathogenicity factors in Bartonella.  相似文献   

13.
Agrobacterium tumefaciens translocates DNA and protein substrates between cells via a type IV secretion system (T4SS) whose channel subunits include the VirD4 coupling protein, VirB11 ATPase, VirB6, VirB8, VirB2, and VirB9. In this study, we used linker insertion mutagenesis to characterize the contribution of the outer-membrane-associated VirB9 to assembly and function of the VirB/D4 T4SS. Twenty-five dipeptide insertion mutations were classified as permissive for intercellular substrate transfer (Tra+), completely transfer defective (Tra-), or substrate discriminating, e.g., selectively permissive for transfer only of the oncogenic transfer DNA and the VirE2 protein substrates or of a mobilizable IncQ plasmid substrate. Mutations inhibiting transfer of DNA substrates did not affect formation of close contacts of the substrate with inner membrane channel subunits but blocked formation of contacts with the VirB2 and VirB9 channel subunits, which is indicative of a defect in assembly or function of the distal portion of the secretion channel. Several mutations in the N- and C-terminal regions disrupted VirB9 complex formation with the outer-membrane-associated lipoprotein VirB7 or the inner membrane energy sensor VirB10. Several VirB9.i2-producing Tra+ strains failed to elaborate T pilus at detectable levels (Pil-), and three such Tra+ Pil- mutant strains were rendered Tra- upon deletion of virB2, indicating that the cellular form of pilin protein is essential for substrate translocation. Our findings, together with computer-based analyses, support a model in which distinct domains of VirB9 contribute to substrate selection and translocation, establishment of channel subunit contacts, and T-pilus biogenesis.  相似文献   

14.
Agrobacterium tumefaciens VirB proteins assemble a type IV secretion apparatus for the transfer of DNA and proteins to plant cells. To study the role of the VirB6 protein in the assembly and function of the type IV apparatus, we determined its subcellular location by immunofluorescence microscopy. In wild-type bacteria VirB6 localized to the cell poles but in the absence of the tumour-inducing plasmid it localized to random sites on the cell membranes. Five of the 11 VirB proteins, VirB7-VirB11, are required for the polar localization of VirB6. We identified two regions of VirB6, a conserved tryptophan residue at position 197 and the extreme C-terminus, that are essential for its polar localization. Topology determination by PhoA fusion analysis placed both regions in the cell cytoplasm. Alteration of tryptophan 197 or the deletion of the extreme C-terminus led to the mislocalization of the mutant protein. The mutations abolished the DNA transfer function of the protein as well. The C-terminus of VirB6, in silico, can form an amphipathic helix that may encode a protein-protein interaction domain essential for targeting the protein to a cell pole. We previously reported that another DNA transfer protein, VirD4, localizes to a cell pole. To determine whether VirB6 and VirD4 localize to the same pole, we performed colocalization experiments. Both proteins localized to the same pole indicating that VirB6 and VirD4 are in close proximity and VirB6 is probably a component of the transport apparatus.  相似文献   

15.
Bacteria use type IV secretion systems (T4SS) to translocate DNA (T-DNA) and protein substrates across the cell envelope. By transfer DNA immunoprecipitation (TrIP), we recently showed that T-DNA translocates through the Agrobacterium tumefaciens VirB/D4 T4SS by forming close contacts sequentially with the VirD4 receptor, VirB11 ATPase, the inner membrane subunits VirB6 and VirB8 and, finally, VirB2 pilin and VirB9. Here, by TrIP, we show that nucleoside triphosphate binding site (Walker A motif) mutations do not disrupt VirD4 substrate binding or transfer to VirB11, suggesting that these early reactions proceed independently of ATP binding or hydrolysis. In contrast, VirD4, VirB11 and VirB4 Walker A mutations each arrest substrate transfer to VirB6 and VirB8, suggesting that these subunits energize this transfer reaction by an ATP-dependent mechanism. By co-immunoprecipitation, we supply evidence for VirD4 interactions with VirB4 and VirB11 independently of other T4SS subunits or intact Walker A motifs, and with the bitopic inner membrane subunit VirB10. We reconstituted substrate transfer from VirD4 to VirB11 and to VirB6 and VirB8 by co-synthesis of previously identified 'core' components of the VirB/D4 T4SS. Our findings define genetic requirements for DNA substrate binding and the early transfer reactions of a bacterial type IV translocation pathway.  相似文献   

16.
17.
Bartonella henselae is an arthropod-borne zoonotic pathogen causing intraerythrocytic bacteraemia in the feline reservoir host and a broad range of clinical manifestations in incidentally infected humans. Remarkably, B. henselae can specifically colonize the human vascular endothelium, resulting in inflammation and the formation of vasoproliferative lesions known as bacillary angiomatosis and bacillary peliosis. Cultured human endothelial cells provide an in vitro system to study this intimate interaction of B. henselae with the vascular endothelium. However, little is known about the bacterial virulence factors required for this pathogenic process. Recently, we identified the type IV secretion system (T4SS) VirB as an essential pathogenicity factor in Bartonella, required to establish intraerythrocytic infection in the mammalian reservoir. Here, we demonstrate that the VirB T4SS also mediates most of the virulence attributes associated with the interaction of B. henselae during the interaction with human endothelial cells. These include: (i) massive rearrangements of the actin cytoskeleton, resulting in the formation of bacterial aggregates and their internalization by the invasome structure; (ii) nuclear factor kappaB-dependent proinflammatory activation, leading to cell adhesion molecule expression and chemokine secretion, and (iii) inhibition of apoptotic cell death, resulting in enhanced endothelial cell survival. Moreover, we show that the VirB system mediates cytostatic and cytotoxic effects at high bacterial titres, which interfere with a potent VirB-independent mitogenic activity. We conclude that the VirB T4SS is a major virulence determinant of B. henselae, required for targeting multiple endothelial cell functions exploited by this vasculotropic pathogen.  相似文献   

18.
Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. In a previous work we demonstrated that TrwK is able to hydrolyze ATP. Here, based on the structural homology of VirB4 proteins with the DNA-pumping ATPase TrwB coupling protein, we generated a series of variants of TrwK where fragments of the C-terminal domain were sequentially truncated. Surprisingly, the in vitro ATPase activity of these TrwK variants was much higher than that of the wild-type enzyme. Moreover, addition of a synthetic peptide containing the amino acid residues comprising this C-terminal region resulted in the specific inhibition of the TrwK variants lacking such domain. These results indicate that the C-terminal end of TrwK plays an important regulatory role in the functioning of the T4SS.  相似文献   

19.
Type IV secretion systems (T4SS) are specialized protein complexes used by many bacterial pathogens for the delivery of effector molecules that subvert varied host cellular processes. Brucella spp. are facultative intracellular pathogens capable of survival and replication inside mammalian cells. Brucella T4SS (VirB) is essential to subvert lysosome fusion and to create an organelle permissive for replication. One possible role for VirB is to translocate effector proteins that modulate host cellular functions for the biogenesis of the replicative organelle. We hypothesized that proteins with eukaryotic domains or protein-protein interaction domains, among others, would be good candidates for modulation of host cell functions. To identify these candidates, we performed an in silico screen looking for proteins with distinctive features. Translocation of 84 potential substrates was assayed using adenylate cyclase reporter. By this approach, we identified six proteins that are delivered to the eukaryotic cytoplasm upon infection of macrophage-like cells and we could determine that four of them, encoded by genes BAB1_1043, BAB1_2005, BAB1_1275 and BAB2_0123, require a functional T4SS for their delivery. We confirmed VirB-mediated translocation of one of the substrates by immunofluorescence confocal microscopy, and we found that the N-terminal 25 amino acids are required for its delivery into cells.  相似文献   

20.
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) translocates DNA and protein substrates across the bacterial cell envelope. Six presumptive channel subunits of this T4SS (VirD4, VirBll, VirB6, VirB8, VirB2, and VirB9) form close contacts with the VirD2-T-strand transfer intermediate during export, as shown recently by a novel transfer DNA immunoprecipitation (TrIP) assay. Here, we characterize the contribution of the hydrophobic channel component VirB6 to substrate translocation. Results of reporter protein fusion and cysteine accessibility studies support a model for VirB6 as a polytopic membrane protein with a periplasmic N terminus, five transmembrane segments, and a cytoplasmic C terminus. TrIP studies aimed at characterizing the effects of VirB6 insertion and deletion mutations on substrate translocation identified several VirB6 functional domains: (i) a central region composed of a large periplasmic loop (P2) (residues 84 to 165) mediates the interaction of VirB6 with the exiting T-strand; (ii) a multi-membrane-spanning region carboxyl-terminal to loop P2 (residues 165 to 245) is required for substrate transfer from VirB6 to the bitopic membrane subunit VirB8; and (iii) the two terminal regions (residues 1 to 64 and 245 to 290) are required for substrate transfer to the periplasmic and outer membrane-associated VirB2 and VirB9 subunits. Our findings support a model whereby the periplasmic loop P2 comprises a portion of the secretion channel and distinct domains of VirB6 participate in channel subunit interactions required for substrate passage to the cell exterior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号