首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It has been suggested there is a decreased renal responsiveness to vasopressin following spaceflight and that this may be the mechanism for the increased urine flow that is observed following return to normal gravity. In the present study, we have therefore measured vasopressin receptor expression and activity in kidneys taken from rats 1 and 14 days following spaceflight of 15 days duration. Measurements of renal vasopressin V(2) and V(1a) receptor mRNA expression by quantitative RT-PCR demonstrated little difference at either 1 day or at 14 days following return from space. Evaluation of (3)H-labeled arginine vasopressin binding to membranes prepared from kidneys indicated that the majority of the vasopressin receptors were V(2) receptors. Furthermore, the data suggested that binding to vasopressin V(2) or V(1a) receptors was unaltered at 1 day and 14 days following spaceflight. Similarly, the ability of vasopressin to stimulate adenylate cyclase suggested no change in vasopressin V(2) receptor activity in these animals. These data suggest that, whatever changes in fluid and electrolyte metabolism are observed following spaceflight, they are not mediated by changes in vasopressin receptor number or vasopressin-induced stimulation of adenylate cyclase.  相似文献   

4.
5.
Notch genes play a critical role in mammary gland growth, development and tumorigenesis. In the present study, we have quantitatively determined the levels and mRNA expression patterns of the Notch receptor genes, their ligands and target genes in the postnatal mouse mammary gland. The steady state levels of Notch3 mRNA are the highest among receptor genes, Jagged1 and Dll3 mRNA levels are the highest among ligand genes and Hey2 mRNA levels are highest among expressed Hes/Hey target genes analyzed during different stages of postnatal mammary gland development. Using an immunohistochemical approach with antibodies specific for each Notch receptor, we show that Notch proteins are temporally regulated in mammary epithelial cells during normal mammary gland development in the FVB/N mouse. The loss of ovarian hormones is associated with changes in the levels of Notch receptor mRNAs (Notch2 higher and Notch3 lower) and ligand mRNAs (Dll1 and Dll4 are higher, whereas Dll3 and Jagged1 are lower) in the mammary gland of ovariectomized mice compared to intact mice. These data define expression of the Notch ligand/receptor system throughout development of the mouse mammary gland and help set the stage for genetic analysis of Notch in this context.  相似文献   

6.
V Mazarin  I Gourdou  G Qurat  N Sauze    R Vigne 《Journal of virology》1988,62(12):4813-4818
  相似文献   

7.
Novel splice variants of cyclin E with altered substrate specificity   总被引:2,自引:0,他引:2  
Cyclin E, a G1 cyclin, is overexpressed and present in low molecular weight (LMW) isoforms in breast cancer cells and tumor tissues. In this study we have examined the possibility that the shortened mRNA splice variants could give rise to tumor-specific cyclin E LMW proteins. We used the Splice Capture method to identify, enumerate and isolate known spliced mRNAs and to look for previously undetected mRNA forms of cyclin E that might be translated into the LMW proteins. We show that a new splice variant of cyclin E found in tumor cells isolated by the Splice Capture strategy, named Δ48, activates CDK2 more robustly than full-length cyclin E when assayed from transiently transfected cells with the natural substrate GST-Rb. We also found the Splice Capture method to be superior to the conventional RNase protection assay in analyzing the cyclin E mRNA present in normal and tumor cells. Splice Capture enumerated the relative abundance of known forms of cyclin E mRNA and easily discovered new splice variants in both normal and tumor cells. We conclude that the abundance of cyclin E splice variants in cells may represent a novel form of regulation of cyclin E, and if translated they show altered substrate specificity compared to the full length form of cyclin E.  相似文献   

8.
The rat alpha-thyroid hormone receptor gene encodes through alternative splicing at least three protein isoforms with different functions, and three mRNA species (2.6, 5.4, 6.8 kilobase (kb) in size) are detected using alpha gene-specific probes (Mitsuhashi, T., Tennyson, G. E., Nikodem, V. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5804-5808). In the present study, the identities of these mRNAs were analyzed by Northern analysis, and it was demonstrated that in rat brain the receptor protein is encoded by the minor 5.4- and 6.8-kb mRNAs and the variant proteins are encoded by the major 2.6-kb mRNA. Relative quantities of these mRNAs were determined by RNase protection assay, and the ratio of the receptor mRNAs to the variant mRNAs was estimated to be 1:6 in adult brain. The ratio between the mRNAs was regulated in both a tissue-specific and developmental stage-specific manner. The receptor mRNA levels were also regulated by the thyroid state of the animal showing an increased level in hypothyroid rat liver while those in brain were not affected. Analysis of the alpha-thyroid hormone receptor gene suggested that the choice between two poly-adenylation sites and subsequent RNA processing appear to generate the 3' heterogeneity of these alternative mRNAs.  相似文献   

9.
Arginine vasopressin administration (10(-10)-10(-6) M) to isolated human platelets induces an increase in the specific immunoblotting of a 38 kDa protein revealed by a phosphotyrosine antibody. This signal is biphasic with maximal stimulation within one minute. Neither forskolin (10(-5) M) nor phorbol ester (10(-6) M) produces a similar 38 kDa signal. The specific immunoblotted signals are competitively abolished by 1 mM phosphotyrosine but not phosphoserine or phosphothreonine. Electrophoretic separation at pH 3.5 of the acid hydrolysates of the 38 kDa proteins reveals a vasopressin dependent increase in levels of phosphotyrosine as well as phosphoserine and phosphothreonine. The 38 kDa phosphorylation is also induced by the specific arginine vasopressin V1 receptor agonist (Phe2Orn8Vastocina) and blocked by the V1 receptor antagonist [desGly(NH2)d(CH2)5Tyr(Me) AVPb]. These observations suggest that arginine vasopressin signal transduction may be associated with the tyrosine phosphorylation of a 38 kDa protein.  相似文献   

10.
Eliyahu E  Lesnik C  Arava Y 《FEBS letters》2012,586(1):64-69
Many nuclear-transcribed mRNAs encoding mitochondrial proteins are localized near the mitochondrial outer membrane. A yet unresolved question is whether protein synthesis is important for transport of these mRNAs to their destination. Herein we present a connection between mRNA localization in yeast and the protein chaperone Ssa1. Ssa1 depletion lowered mRNA association with mitochondria while its overexpression increased it. A genome-wide analysis revealed that Ssa proteins preferentially affect mRNAs encoding hydrophobic proteins, which are expected targets for these protein chaperones. Importantly, deletion of the mitochondrial receptor Tom70 abolished the impact of Ssa1 overexpression on mRNAs encoding Tom70 targets. Taken together, our results suggest a role for Ssa1 in mediating localization of nascent peptide-ribosome-mRNA complexes to the mitochondria, consistent with a co-translational transport process.  相似文献   

11.
Neurons that synthesize melanin-concentrating hormone (MCH) colocalize GABA, regulate energy homeostasis, modulate water intake, and influence anxiety, stress, and social interaction. Similarly, vasopressin and oxytocin can influence the same behaviors and states, suggesting that these neuropeptides may exert part of their effect by modulating MCH neurons. Using whole cell recording in MCH-green fluorescent protein (GFP) transgenic mouse hypothalamic brain slices, we found that both vasopressin and oxytocin evoked a substantial excitatory effect. Both peptides reversibly increased spike frequency and depolarized the membrane potential in a concentration-dependent and tetrodotoxin-resistant manner, indicating a direct effect. Substitution of lithium for extracellular sodium, Na(+)/Ca(2+) exchanger blockers KB-R7943 and SN-6, and intracellular calcium chelator BAPTA, all substantially reduced the vasopressin-mediated depolarization, suggesting activation of the Na(+)/Ca(2+) exchanger. Vasopressin reduced input resistance, and the vasopressin-mediated depolarization was attenuated by SKF-96265, suggesting a second mechanism based on opening nonselective cation channels. Neither vasopressin nor oxytocin showed substantial excitatory actions on lateral hypothalamic inhibitory neurons identified in a glutamate decarboxylase 67 (GAD67)-GFP mouse. The primary vasopressin receptor was vasopressin receptor 1a (V1aR), as suggested by the excitation by V1aR agonist [Arg(8)]vasotocin, the selective V1aR agonist [Phe(2)]OVT and by the presence of V1aR mRNA in MCH cells, but not in other nearby GABA cells, as detected with single-cell RT-PCR. Oxytocin receptor mRNA was also detected in MCH neurons. Together, these data suggest that vasopressin or oxytocin exert a minimal effect on most GABA neurons in the lateral hypothalamus but exert a robust excitatory effect on presumptive GABA cells that contain MCH. Thus, some of the central actions of vasopressin and oxytocin may be mediated through MCH cells.  相似文献   

12.
BACKGROUND: The molecular recognition theory predicts that binding domains of peptide hormones and their corresponding receptor binding domains evolved from complementary strands of genomic DNA, and that a process of selective evolutionary mutational events within these primordial domains gave rise to the high affinity and high specificity of peptide hormone-receptor interactions observed today in different peptide hormone-receptor systems. Moreover, this theory has been broadened as a general hypothesis that could explain the evolution of intermolecular protein-protein and intramolecular peptide interactions. MATERIALS AND METHODS: Applying a molecular cloning strategy based on the molecular recognition theory, we screened a rat kidney cDNA library with a vasopressin (AVP) antisense oligonucleotide probe, expecting to isolate potential AVP receptors. RESULTS: We isolated a rat kidney cDNA encoding a functional V1-type vasopressin receptor. Structural analysis identified a 135 amino acid-long polypeptide with a single transmembrane domain, quite distinct from the rhodopsin-based G protein-coupled receptor superfamily. Functional analysis of the expressed V1-type receptor in Cos-1 cells revealed AVP-specific binding, AVP-specific coupling to Ca2+ mobilizing transduction system, and characteristic V1-type antagonist inhibition. CONCLUSIONS: This is the second AVP receptor cDNA isolated using AVP antipeptide-based oligonucleotide screening, thus providing compelling evidence in support of the molecular recognition theory as the basis of the evolution of this peptide hormone-receptor system, as well as adds molecular complexity and diversity to AVP receptor systems.  相似文献   

13.
Messenger RNAs coding for glucocorticoid (GR) and mineralocorticoid (MR) receptor proteins were localized to discrete subfields of the hippocampal formation by in situ hybridization histochemistry, using cRNA probes of approximately equivalent specific activity. Both GR and MR mRNAs were present in all subfields examined; GR mRNA was of greatest abundance in CA1, while MR mRNA was most densely labeled in CA3. In all subfields examined, MR mRNA was considerably more abundant than GR mRNA. Removal of circulating glucocorticoids by adrenalectomy precipitated an up-regulation of GR mRNA in subfields CA1-2 and the dentate gyrus, which was reversed by dexamethasone replacement. High doses of dexamethasone significantly down-regulated GR mRNA in CA3. In contrast, adrenalectomy produced significant up-regulation of MR mRNA only in subfield CA1-2. The data indicate that steroid receptor mRNAs are differentially distributed in hippocampus, and that sensitivity to steroids occurs within defined structural domains of the hippocampal formation.  相似文献   

14.
15.
Vasopressin V2 receptor was expressed in Xenopus laevis oocytes which were injected with poly(A) +RNA from porcine kidney cell line LLC-PK1. Pharmacological antagonism of the expressed V2 receptor was observed between arginine vasopressin and two potent and selective vasopressin antagonists: [d(CH2)5, D2-Phe2 Ile4, Ala9-NH2]arginine vasopressin and [d(CH2)5,D-Ile2, Ile4]arginine vasopressin. Activation constant for arginine vasopressin concentration was 1.32 x 10(-10)M. The nucleotide length of the mRNA encoding for vasopressin V2 receptor was deduced to be approximately 2 kilobases.  相似文献   

16.
17.
We report on the expression of ionotropic glutamate receptor subunits in primary neuronal cultures from rat cortex, hippocampus and cerebellum and of metabotropic glutamate (mGlu) receptor subtypes in these neuronal cultures as well as in cortical astroglial cultures. We found that the NMDA receptor (NR) subunits NR1, NR2A and NR2B were expressed in all three cultures. Each of the three cultures showed also expression of the four AMPA receptor subunits. Although RT-PCR detected mRNA of all kainate (KA) subunits in the three cultures, western blot showed only expression of Glu6 and KA2 receptor subunits. The expression analysis of mGlu receptors indicated the presence of all mGlu receptor subtype mRNAs in the three neuronal cultures, except for mGlu2 receptor mRNA, which was not detected in the cortical and cerebellar culture. mGlu1a/alpha, -2/3 and -5 receptor proteins were present in all three cultures, whereas mGlu4a and mGlu8a receptor proteins were not detected. Astroglial cultures were grown in either serum-containing or chemically defined medium. Only mGlu5 receptor protein was found in astroglial cultures grown in serum-containing medium. When astrocytes were cultured in chemically defined medium, mGlu3, -5 and -8 receptor mRNAs were detected, but at the protein level, still only mGlu5 receptor was found.  相似文献   

18.
19.
After agonist-induced internalization, the vasopressin V2 receptor (V2R) does not recycle to the plasma membrane. The ADP-ribosylation factor (ARF) proteins initiate vesicular intracellular traffic by promoting the recruitment of adaptor proteins; thus, we sought to determine whether ARF6 could promote V2R recycling. Neither the agonist-induced internalization nor the recycling of the V2R was regulated by ARF6, but a constitutively active mutant of ARF6 reduced cell-surface V2Rs 10-fold in the absence of agonist treatment. Visualization of the ARF6 mutant-expressing cells revealed a vacuolar-staining pattern of the V2R instead of the normal plasma membrane expression. Analysis of V2R maturation revealed that reduced cell-surface expression was due to the diminished ability of the newly synthesized receptor to migrate from the endoplasmic reticulum to the Golgi network. The same mechanism affected processing of the V1aR and acetylcholine M2 receptors. Therefore, ARF6 controls the exit of the V2 and other receptors from the endoplasmic reticulum in addition to its established role in the trafficking of plasma-membrane-derived vesicles.  相似文献   

20.
The present work describes the discovery of novel series of (4,4-difluoro-1,2,3,4-tetrahydro-5H-1-benzazepine-5-ylidene)acetamide derivatives as arginine vasopressin (AVP) V(2) receptor agonists. By replacing the amide juncture in YM-35278 with a direct ring connection gave compound 10a, which acts as a V(2) receptor agonist. These studies provided the potent, orally active non-peptidic V(2) receptor agonists 10a and 10j.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号